跳到主要內容

臺灣博碩士論文加值系統

(44.200.122.214) 您好!臺灣時間:2024/10/07 07:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃雅真
研究生(外文):Ya-Chen Huang
論文名稱:發展時空資料補遺技術於環境監測之應用
論文名稱(外文):The development of a spatial-temporal data imputation technique for the applications of environmental monitoring
指導教授:張揚祺張揚祺引用關係
指導教授(外文):Yang-Chi Chang
學位類別:碩士
校院名稱:國立中山大學
系所名稱:海洋環境及工程學系研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:78
中文關鍵詞:時空資料環境監測資料缺失值資料補遺
外文關鍵詞:environmental monitoring datadata imputationmissing values
相關次數:
  • 被引用被引用:1
  • 點閱點閱:270
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來永續發展已成為國際上的重要議題,許多永續發展指標也陸續被提出,例如海島台灣、都市台灣的指標系統等。但是當我們在研究海域環境永續指標時,赫然發現環境監測資料的缺失情況極為嚴重。資料是所有資訊的源頭,然而原始資料往往會有各式缺失值存在,由這些充滿缺失的資料所推估的結果,其準確性亦受質疑。是故,如果想進一步的分析資料且獲得正確的資訊,原始資料的處理就變得格外重要。經由研究分析大致了解環境監測資料缺失值產生的原因,例如:測量機器發生故障、檢測的樣本遭到毀壞、研究人員忘記記錄、資料合併時有記錄沒有匹配,或因資料進行整理程序造成記錄遺失等。分析時,亦發現資料的缺失狀態極為不同,例如:在同一時間點,空間資料缺失某些欄位、或是缺失部分空間點的資料,以及在同一空間點,缺失少數時間點的資料、或是缺失所有時間序列資料等。因此環境監測之缺失資料與時間和空間具有相關性,目前應用於資料補遺法大致有:針對資料型態插補、針對空間分佈關係作插補、與針對時間數列函數作插補。因為同時考慮時間與空間相關性的插補極少,所以本研究發展出一套結合時間與空間資訊之環境監測資料插補法,整合相關分析技術,提升資料補遺的正確性。
In recent years, sustainable development has become one of the most important issues internationally. Many indicators related to sustainable development have been proposed and implemented, such as Island Taiwan and Urban Taiwan. However the missing values come along with environmental monitoring data pose serious problems when we conducted the study on building a sustainable development indicator for marine environment. Since data is the origin of the summarized information, such as indicators. Given the poor data quality caused by the missing values, there will be some doubts about the result accuracy when using such data set for estimation. It is therefore important to apply suitable data pre-processing, such that reliable information can be acquired by advanced data analysis. Several reasons cause the problem of missing value in environmental monitoring data, for example: breakdown of machines, ruin of samples, forgot recording, mismatch of records when merging data, and lost of records when processing data. The situations of missing data are also diverse, for example: in the same time of sampling, some data records at several sampling sites are partially or completely disappeared. On the contrary, partial or complete time series data are missing at the same sampling site. It is therefore obvious to see that the missing values of environmental monitoring data are both related to spatial and temporal dimensions. Currently the techniques of data imputation have been developed for certain types of data or the interpolation of missing values based on either geographic data distributions or time-series functions. To accommodate both spatial and temporal information in an analysis is rarely seen. The current study has been tried to integrate the related analysis procedures and develop a computing process using both spatial and temporal dimensions inherent in the environmental monitoring data. Such data imputation process can enhance the accuracy of estimated missing values.
一、緒論 1
1.1研究動機與目的 1
1.2研究流程 3
二、文獻回顧 5
2.1 環境品質監測 5
2.2 插補分析模式 6
三、研究方法 9
3.1 克利金法 9
3.2 時間序列插補 12
3.3 三維插補法 14
3.3.1 Delaunay Triangulation 14
3.3.2 線性3-D有限函數(Linear 3-D shape functions) 16
3.4 類神經網路 18
3.4.1 倒傳遞網路模式 18
3.4.2 網路模式參數 20
3.5 模式驗證 21
四、模式發展與效能測試 23
4.1 插補模式發展 23
4.2 模式一:時空插補法 31
4.3 模式二:時空類神經插補法 32
4.4 結果討論 33
4.4.1 研究資料說明 33
4.4.2 不同缺失比例插補結果 39
4.4.3 不同領域資料插補結果 45
4.4.4 尺度變化插補結果 52
五、結論與建議 68
參考文獻: 70
1.朱執均,類神經網路之應用-南中國海海域潮汐預報及補遺,國立中山大學海洋環境及工程學系研究所碩士論文,1999
2.林俊男,應用類神經網路法於遺漏值問題之研究,南華大學資訊管理學研究所碩士論文,2004
3.林界宏,地理資訊系統在空氣品質監測上之應用,國立中興大學環境工程學系碩士論文,1997
4.許汎穎,未設測站流量推估-以烏溪為例,逢甲大學土木及水利工程所碩士論文,2001
5.陳銘宗,組合式關聯法則應用於缺值問題之研究,朝陽科技大學資訊管理系碩士論文,2002
6.曾淑惠,地理資訊系統在空氣品質預測模型建構上之應用研究,元智大學機械工程研究所碩士論文,1999
7.游裕昌,運用基因群集技術於大型資料庫內遺失值之處理,國立台灣科技大學電子工程系碩士論文,2003
8.黃宗仁,利用類神經網路預測台中都會區臭氧趨勢之研究,國立中興大學環境工程學系碩士論文,2000
9.趙士儀,以主成份分析法處理定量資料缺失值問題,元智大學資訊管理研究所碩士論文,1999
10.劉清源,乾旱臨前時距預測之研究,國立臺灣大學農業工程研究所碩士論文,1994
11.羅夢娜、黃文璋、沈世宏、方淑彗,下雨及雨後空氣品質變化之時間序列分析研究。行政院環境保護署,1989
12.盧瑞山,類神經網路於環境資訊之鑑識、推估及預測之研究,國立臺灣大學環境工程學研究所博士論文,1998
13.Tom Mitchell, Machine Learning, McGraw Hill, 1997
14.Enders, C. K. (2001). A primer on maximum likelihood algorithms available for usewith missing data. Structural Equation Modeling, 8, 128-141.
15.Enders, C. K., & Bandalos, D. L. (2001). The relative performance of full informationmaximum likelihood estimation for missing data in structural equation models.Structural Equation Modeling, 8, 430-457.
16.Wothke, W. (1993). Nonpositive definite matrices in structural modeling. In K. A.Bollen & J. S. Long (Eds.), Testing structural equation models (pp. 0-39).Newbury Park, CA: Sage
17.Little, R. J. A., & Rubin, D. B. (1987). Statistical analysis with missing data. New York: John Wiley & Sons.
18.King, D. W., King, L. A., Bachrach, P. S., & McArdle, J. J. (2001). Contemporary approaches to missing dada: the Glass is really half full. PTSD Research Quarterly, 12, 1-8.
19.Shumway, R. H. and Stoffer, D. S. (1982) .“An Approach to Time Series Smoothing and Forecasting Using the EM Algorithm”. Journal of Time Series Analysis , Vol. 3 , No. 4 , 253 – 264 .
20.Rubin,D.B.(1976).Inferenceand missing data. Biometrika,63,581-592
21.Little,R.J.A.and Rubin,D.B.(1987).Statistical Analysis with Missing Data.
22.Li, Lixin; Revesz, Peter(2004),Interpolation methods for spatio-temporal geographic data,Computers, Environment and Urban Systems Volume: 28, Issue: 3, May, , pp. 201-227
23.Goodman, J. E., & O’Rourke, J. (Eds.). (1997). Handbook of discrete and computational geometry.Boca Raton, NY: CRC Press.
24.Preparata, F.P., & Shamos, M.I.(1985). Computational geometry: an introduction.Springer-Verlag.
25.Shewchuk, J.R.(1996). Triangle: engineering a 2D quality mesh generator and delaunay triangulator. In Proc. First Workshop on applied computational geometry (pp.124–133).Philadelph ia, PA.
26.Nicholls, D. F. and Quinn, B. G. (1982), "Random Coefficient Autoregressive Models: an Intrduction", Lecture Notes in Statistics, Vol. No. 11. Springer, New York.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top