跳到主要內容

臺灣博碩士論文加值系統

(98.80.143.34) 您好!臺灣時間:2024/10/14 01:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:洪榮耀
研究生(外文):Jung-Yao Hung
論文名稱:資訊交易機率模型及其應用
論文名稱(外文):A Model of the Probability of Informed Trading and its Application
指導教授:馬黛馬黛引用關係
指導教授(外文):T. Ma
學位類別:博士
校院名稱:國立中山大學
系所名稱:財務管理學系研究所
學門:商業及管理學門
學類:財務金融學類
論文種類:學術論文
論文出版年:2005
畢業學年度:94
語文別:中文
論文頁數:108
中文關鍵詞:穩定基金資產報酬交易頻率日內型態套利交易機率模型資訊交易者非資訊交易者資訊交易機率模型
外文關鍵詞:probability model of informed tradinguninformed traderinformed traderprobability model of arbitrage tradingintraday patterntrade frequencyreturn of assetsstabilization fund
相關次數:
  • 被引用被引用:13
  • 點閱點閱:912
  • 評分評分:
  • 下載下載:168
  • 收藏至我的研究室書目清單書目收藏:1
本文首先建立了委託單驅動市場資訊交易機率理論模型,並以此模型分析資訊交易與資產報酬之關連性,買賣-價格效果。其次,我們應用資訊交易機率理論模型,建構了能分析護盤基金及套利交易之委託單驅動市場套利交易機率理論模型,探討政府護盤是否有其必要和探討護盤進場時點是否符合下跌時進場,上漲時不介入之穩定基金設立精神。最後,我們則是建立一個能分析資訊交易者、非資訊交易者日內各交易區間交易規模的交易者交易實證模型,並利用此模型分析交易頻率改變時,市場各類型投資人之日內交易規模變化,瞭解市場績效之成因,主要實證結果分述如下:
在研究資訊交易與資產報酬及買賣-價格效果相關分析部分,我們發現1)短期(日內、日)資訊交易機率與資產報酬無關,但中期(週)資訊交易機率與資產報酬有關,但其影響程度並未如先前研究(Hasbrouck (1991a, b), Glosten and Harris (1988))預期般高。2)好消息交易日之日內資訊交易明顯高於壞消息,此結果顯示市場存在買賣資訊交易不均衡之現象。
在探討護盤進場時點是否符合下跌時進場,上漲時不介入之穩定基金設立精神部分,其結果主要為1)在護盤基金介入個股波動稍微變小、效率稍微變差、報酬變得較佳及流動顯著變大。2)護盤基金介入標的之套利交易機率與其他公司套利交易機率並無顯著差異,且兩者間績效(包含波動、效率、流動及報酬)也無明顯差別。3)護盤基金與套利者傾向開盤期間交易,此結果與Schwartz(1988)之主張相符。4)我們還發現相較於其他套利交易,護盤基金交易與市場漲跌較為緊密,而與個股漲跌較為疏遠。
在分析交易頻率改變時,市場各類型投資人之日內交易規模變化部分,則是發現1)交易頻率變慢,造成了開盤的日內交易比率變小與績效變差,而提高了收盤時的日內交易比率與績效,尤其是在高流動性公司之變化特別顯著。2)交易次數增加,能增加高、中流動性公司之流動性。對低流動公司而言,雖有提升流動性之幫助,但卻會增加其波動,並降低其價格發現速度。
另外,本文模型主要貢獻在資訊交易機率理論模型部分,首先是補先前未有委託單集合競價理論模型之不足;其次,模型設定加入資訊交易者可採限價委託,因此與實際市場現象較相符;第三,模型能計算交易日日內區間之資訊交易機率,因此能分析資訊交易者及市場日內及週內行為或現象;第四,模型是以成交資料而非委託資料來估計資訊交易機率,避免了委託單成交風險造成資訊交易機率估計誤差。第五,模型是在區隔好、壞消息後,計算個股資訊交易機率,因此能分析買、賣資訊交易行為。在套利交易機率理論模型部分,則是提供了能分析市場是否存在自行穩定機制-套利交易的方法,來探討穩定基金存在之必要性及其日內交易行為。最後在資訊交易機率實證模型部分,由於本文是藉由模擬市場非資訊交易者日內交易行為策略,以迴歸分析萃取出日內交易區間成交量變異被非資訊交易者日內行為變異解釋比率,來計算區間資訊及非資訊交易比率,因此能避免先前委託單資訊交易實證模型之各筆交易量被認定僅來自單一交易者缺失。
This paper firstly constructed an order-driven market probability model of informed trading to analyze the correlation between informed trade and return of assets and the trade-price effect. Secondly, using the probability model of informed trading, we constructed a probability model of arbitrage trading in order-driven call market, which could analyze the stabilization fund and the arbitrage trade, to investigate whether the government’s interference measures were necessary and whether the intervened timepoints conformed to the set-up spirit of the stabilization fund—to intervene while falling and not to while rising. Finally, we set up a ratio empirical model of informed trading which could analyze the intraday trade scale of each trade section of informed traders and uninformed traders, to analyze the change of intraday trade scale of each type of investors while trade frequency changed to explore the factors of market performance. The main results are as follows respectively:
Regarding the correlation analysis of informed trading and return of assets and trade-price effect, we found that (1) in the short-term (intraday, day) there was no relationship between probability of informed trading and return of assets, whereas in the mid-term probability of informed trading was correlated with return of assets although the influence impact was not as high as prior researches (Hasbrouck (1991a, b), Glosten and Harris (1988)) expected. (2) The intraday probability of informed trading of good news days was obviously higher than that of bad news days, which indicated that unbalanced buy-sell informed trade phenomenon existed in the market.
Regarding the investigation of whether the intervened timepoints of stabilization fund conformed to the set-up spirit of the stabilization fund—to intervene while falling and not to while rising, the main results are: (1) the individual stocks intervened by the stabilization fund had slightly smaller volatility, slightly worse efficiency, better returns and significantly larger liquidity. (2) There was no significant difference in the probability of arbitrage trading between the targets intervened by the stabilization fund and the other companies, nor in the performance (including volatility, efficiency, liquidity and return) between both. (3) The stabilization fund and arbitragers tended to conduct transactions in the opening period, which corresponds with the proposition of Schwartz (1988). (4) We also found that compared with other arbitrage trade, the trade of the stabilization fund was more correlated with the price up-down of the market, but not with that of individual stocks.
In the analysis of the intraday trade scale change of each type of investors while trade frequency changed, the main findings are: (1) the slowdown of trade frequency caused smaller intraday trade ratio and worse performance in the opening, but it increased the intraday trade ratio and performance of the closing period, which was especially significant in the high-liquidity companies. (2) The increase of trade frequency could raise the liquidity of the high-liquidity and middle-liquidity companies. As to the low-liquidity companies, although the increase of trade frequency increased the liquidity, it raised their volatility and decreased their price finding speed.
The main contributions of this paper’s models are indicated as follows. Regarding a probability model of informed trade: first, it improves the prior ones by bringing the order-driven call market model; second, the addition of informed traders’ possibility to use limit order in the model set-up better corresponds to the real market; third, the model can calculate the probability of informed trading of intraday trade section and thus can analyze the intraday and intraweek behavior or phenomenon of informed traders and the market; fourth, the model estimates the probability of informed trading using trade data, not order data, and thus avoids the probability of informed trade estimation error caused by order trade risk; fifth, the model calculates the probability of informed trade of individual stock after separating good and bad news and thus can analyze buy-sell informed trade behavior. Regarding the probability model of arbitrage trading, it provides a method to analyze whether self-stabilization mechanism-arbitrage trade exists in the market to investigate on the necessity of the stabilization fund and its intraday trade behavior. Finally, regarding the ratio empirical model of informed trading, since this paper calculated the section informed and uninformed trade ratio by simulating uninformed traders’ intraday trade strategy and by extracting the ratio of the trade volume variation of intraday trade section explained by uninformed traders’ intraday behavior variation using regression analysis, it can avoid the deficiency that every trade volume was regarded as from a single trader in the prior order empirical model of informed trading.
第一章 緒論 10
1.1 研究動機 10
1.2研究目的 17
1.3 內容簡介、研究貢獻及論文架構 18
第二章 文獻回顧 23
2.1資訊交易與價格變動相關研究 23
2.2資訊交易與資產報酬相關研究 23
2.3買賣-價格效果相關研究 24
2.4穩定基金相關研究 25
2.5交易頻率相關研究 25
2.6市場投資人交易行為相關研究 26
2.6.1 資訊交易者行為 27
2.6.2 雜訊交易者行為 27
2.6.3 流動性交易者行為 28
第三章 資訊交易機率模型及資產報酬與買賣-價格效果分析 29
3.1 前言 29
3.2 資訊交易機率模型 29
3.2.1 模型假設 30
3.2.1.1 交易機制假設 30
3.2.1.2公開資訊資產評價假設 30
3.2.1.3 私人資訊假設 31
3.2.2 交易者行為 32
3.2.2.1 資訊交易者交易決策 32
3.2.2.2 非資訊交易者交易決策 33
3.2.3 符號設定 34
3.2.4 資訊交易機率 35
3.3 交易者策略模擬 37
3.3.1 第t個交易區間非資訊交易者之買、賣單比率模擬 38
3.3.2 第t個交易區間非資訊交易者之限、市價單比率模擬 38
3.3.3 資訊交易者第t個交易區間之限、市價單比率模擬 39
3.3.4 區間狀況s成交於買、賣價之機率模擬 40
3.4 資訊交易機率估計 40
3.5 樣本資料及研究說明 43
3.6 實證分析 44
3.6.1 資訊交易機率 44
3.6.2 資訊交易與價格變動 48
3.6.3 資訊交易與資產報酬 48
3.6.4 資訊交易與買賣-價格效果 49
3.6.5 資訊交易之穩健度分析 51
第肆章 套利交易機率模型及921地震護盤績效及行為分析 54
4.1 前言 54
4.2 套利交易機率模型 55
4.2.1 交易機制假設 55
4.2.2 一般時期資產評價 55
4.2.2.1 公開資訊資產評價假設 55
4.2.2.2 私人資訊假設 56
4.2.3非經濟因素重大不利事件發生時期資產評價 56
4.2.4 交易者行為 58
4.2.4.1套利交易者交易決策 58
4.2.4.2 非套利交易者交易決策 59
4.2.5 符號設定 59
4.2.6 套利交易機率 59
4.3 樣本資料及研究說明 61
4.4 實證分析 63
4.4.1 套利交易機率 63
4.4.2 績效分析 63
4.4.3 套利日內行為分析 65
4.4.4 交易者護盤期間交易時點分析 66
第伍章 各類交易者交易比率模型及交易頻率改變對市場交易者交易行為影響分析 69
5.1 前言 69
5.2 各類交易者交易比率模型 69
5.2.1 市場投資人設定 69
5.2.2模型設定 70
5.2.2.1 交易過程 70
5.2.2.2 成交量 72
5.2.3 日內交易機率模擬分析 72
5.2.3.1 交易者交易策略變數模擬 73
5.2.3.2 日內各類交易者交易比率模擬 74
5.3 研究假設 75
5.4 檢定方法 76
5.4.1 不同時期及日內區間差異檢定 76
5.4.2 交易頻率與日內交易績效的關係 77
5.5樣本資料及研究說明 79
5.6 實證分析 81
5.6.1 交易者基本性質檢定 82
5.6.2 敘述統計分析 82
5.6.3 不同交易頻率時期及日內區間差異檢定 83
5.6.4 不同交易頻率時期日內型態差異大小及方向 85
5.6.5 交易頻率與日內交易績效的關係 89
第六章 結論 93
參考文獻 97
1.姚欣欣 (2000),「股市穩定基金對加權股價指數日內報酬率之影響」,貨幣市場,第四期,第四卷,35-41。
2.馬黛、胡德中、詹傑仲 (2002),「政府干預股市的理論與實證分析:台灣股市的護盤實例」,金融財務學刊,第十期,第三卷,107-145。
3.馬黛、洪榮耀,(2002),「穩定基金之行為與績效:從資訊交易的觀點」,2002年財務金融學術研討會。
4.馬黛、楊清芬,(2003),「Measuring the Probability of Informed Trading in a Call Auction Market and A Comprehensive Analysis on the Determinants of Informed Trading」,高頻金融財務資料分析國際研討會,中研院經濟所,台北。
5.劉玉珍,(1991),「資訊到達影響競價制度績效之模擬研究」,中山大學企業管理研究所未出版博士論文。
6.Admati, A. and P. Pfleiderer, 1988, “Market for Information: Selling and Trading on Information in Financial Markets”, American Economic Review 78(2), 96-103.
7.Admati, A. and P. Pfleiderer, 1988, “A Theory of Intraday Patterns: Volume and Price Variability”, Review of Financial Studies 1, 3-40.
8.Admati, A. and P. Pfleiderer, 1989, “Divide and Conquer: A Theory of Intraday and Day-of-the-Week Mean Effects”, Review of Financial Studies 2, 189-223.
9.Amihud, Y. and H. Mendelson, 1986, “Asset Pricing and the Bid-Ask Spread”, Journal of Financial Economics 17(2), 223-249.
10.Amihud, Y. and H. Mendelson, 1987, “Trading Mechanisms and Stock Return: A Empirical Investigation”, Journal of Finance 42, 533-555.
11.Amihud, Y. and H. Mendelson, 1989, “The Effects of Beta, Bid-Ask Spread, Residual Risk, and Size on Stock Returns”, Journal of Finance 44(2), 479-486.
12.Amihud, Y. and H. Mendelson, 1991, “Volatility, Efficiency, and Trading: Evidence from the Japanese Stock Market”, Journal of Finance 46(5), 1765-1790.
13.Amihud, Y., H. Mendelson and M. Murgia, 1990, “Stock Market Microstructure and Return Volatility”, Journal of Banking and Finance 14, 423-440.
14.Amihud, Y., H. Medelson and B. Lauterbach, 1997, “Market Microstructure and Seucrity Values: Evidence from the Tel Aviv Stock Exchange”, Journal of Financial Economics 45(3), 365-390.
15.Arak, M. and R. E. Cook, 1997, “Do Daily Price Limits Act as Magnets? The Case of Treasury Bond Futures”, Journal of Financial Servies Research 12(1), 5-20.
16.Back, K., C. H. Cao and G. A. Willard, 2000, “Imperfect Competition among Informed Traders”, Journal of Finance 55(5), 2117-2155.
17.Bagehot, W., 1971, “The Only Game ion Town”, Financial Analysts Journal 27(2), 12-14.
18.Barclay, M. J. and J. B. Warner, 1993, “Stealth Trading and Volatility: Which Trades Move Prices?”, Journal of Financial Economics 34(3), 281-305.
19.Benston, G. J. and R. L. Hagerman, 1974, “Determinants of Bid-Ask Spread in the Over-The-Counter Market”, Journal of Financial Economics 1(4), 353-364.
20.Berkmen, H. and O. W. Steenbeek, 1998, “The Influence of Daily Limits on Trading in Nikkei Futures”, The Journal of Futures Markets 18(3), 265-279.
21.Black, F., 1986, “Noise”, Journal of Finance 41(3), 529-543.
22.Box, G. E. P. and G. C. Tiao, 1975, “Intervention Analysis with Applications to Economic and Environmental Problems”, Journal of American Statistical Association 70, 70-79.
23.Brennan M. J. and A. Subramanyam, 1996, “Market Microstructure and Asset Pricing: On the Compensation for illiquidity in Stock Returns”, Journal of Financial Economics 41(3), 441-464.
24.Brockman, P. and D. Y. Chung, 2000a, “Informed and Uninformed Trading in an Electronic, Order-Driven Environment”, Financial Review 35, 125-146.
25.Brockman, P. and D. Y. Chung, 2000b, “An Empirical Investigation of Trading on Asymmetric Information and Heterogeneous Prior Beliefs”, Journal of Empirical Finance 7(5), 417-454.
26.Chan L.K.C. and J. Lakonishok, 1993, “Institutional Trades and Intraday Stock Price Behavior”, Journal of Financial Economics 33, 173-199.
27.Chan L.K.C. and J. Lakonishok, 1995, “The Behavior of Stock Prices around Institutional Trades”, Journal of Finance 50, 1147-1174.
28.Chang, R. P., Hsu, S. T., Huang, N. K, and S. G. Rhee, 1999, “The Effects of Trading Methods on Volatility and Liquidity: Evidence from the Taiwan Stock Exchange”, Journal of Business Finance & Accounting 26 (1-2), 137-170.
29.Chang E. C., J. W. Cheng and A. Khorana, 2000, “An Examination of Herd Behavior in Equity Markets: An International Perspective” Journal of Banking & Finance 24(10), 1651-1679.
30.Chiang, R. and P. C. Venkatesh, 1988, “Insider Holding and Perceptions of Information Asymmetry: A Note”, Journal of Finance 43(4), 1041-1048.
31.Chou, K. R. and P. Handa, 1999, “The Response of Security Markets to Order Imbalance NYSE vs. Nasdaq”, The Paper of 8th Conference on Theories and Practices of Securities and Financial Markets.
32.Clark, P., 1973, “A Subordinated Stochastic Process Model with Finite Variance for Speculative Prices”, Econometrica 41, 135-155.
33.Cohen, K. J., W. L. Ness, H. Okuda, R. A. Schwartz and D. K. Whitcomb, 1976, “The Determinants of Common Stock Returns Volatility: An International Comparison”, Journal of Finance 31(2), 733-740.
34.Copeland, T. E., 1976, “A Model of Asset Trading Under the Assumption of Sequential Information Arrival”, The Journal of Finance 31(4), 1149-1168.
35.Copeland, T. and D. Galai, 1983, “Information Effect on the Bid-Ask Spreads”, Journal of Finance 38(5), 1457-1469.
36.Daniel, K., D. Hirshleiter and A. Surbrahmanyam, 1998, “Investor Psycholgy and Security Market Under- and Overreactions”, Journal of Finance 53(6), 1839-1885.
37.De Long, J. B., A. Shleifer, L. H. Summers and R. J. Waldmann, 1990a, “Positive Feedback Investment Strategies and Destabilizing Rational Speculation”, Journal of Finance 45, 379-395.
38.De Long, J. B., A. Shleifer, L. H. Summers and R. J. Waldmann, 1990b, “The Survival of Noise Traders in Financial Markets”, Journal of Business 64, 1-19.
39.Dow, J. and G. Gorton, 1994, “Arbitrage Chains”, Journal of Finance 49(3), 819-849.
40.Easley, D. and M. O’Hara, 1987, “Price, Trade Size and Information in Securities Markets”, Journal of Financial Economics 19(1), 69-90.
41.Easley, D. and M. O’Hara, 2000, “Information and the Cost of Capital”, Working Paper, SSRN.
42.Easley, D., N. M. Kiefer, M. O’Hara and J. B. Paperman, 1996, “Liquidity, Information, and Infrequently Traded Stocks”, Journal of Finance 51(4), 1405-1436.
43.Easley, D., N. M. Kiefer and M. O’Hara, 1997, “The Information Content of the Trading Process”, Journal of Empirical Finance 4(2-3), 159-186.
44.Easley, D., S. Hvidkjaer and M. O’Hara, 2002, “Is Information Risk a Determinant of Asset Returns?”, Journal of Finance 57(5), 1891-1921.
45.Eleswarapu, V. R., 1997, “Cost of Transacting and Expected Returns in the Nasdaq Market”, Journal of Finance, 52(2), 2113-2127.
46.Epps, T. W., 1975, “Security Price Changes and Transaction Volumes: Theory and Evidence”, American Economic Review 65, 586-597.
47.Epps, T. and M. Epps, 1976, “The Stochastic Dependence of Security Price Change and Transaction Volumes: Implications for the Mixture-of-Distributions Hypothesis”, Econometrica 44, 305-321.
48.Fischhoff, B., 1975, “Hindsight Foresight: The Effect of Outcome Knowledge on Judgment under Uncertainty”, JEP: Hum. Percept. Performance 1, 288-299.
49.Fischhoff, B. and R. Beyth, 1975, “I Knew it Would Happen”, Organization Behavior and Human Performance 13(1), 1-16.
50.Foster, F. D. and S. Viswanathan, 1990, “A Theory Intraday Variations in Volume, Variance and Trading Costs in Securities Markets”, The Review of Financial Studies 3(4), 593-624.
51.Foster, F. D. and S. Viswanathan, 1993, “Variations in Trading Volume, Return Volatility, and Trading Costs: Evidence on Recent Price Formation Models”, Journal of Finance 48(1), 187-211.
52.Foster, F. D. and S. Viswanathan, 1994, “Strategic Trading with Asymmetrically Informed Traders and Long-Lived Information”, Journal of Financial and Quantitative Analysis 29(4), 499-518.
53.Foster, F. D. and S. Viswanathan, 1996, “Strategic Trading When Agents Forecast the Forecasts of Others”, Journal of Finance 51(4), 1437-1478.
54.French, K. R. and R. Roll, 1986, “Stock Return Variances: The Arrival of Information and the Reaction of Traders”, Journal of Financial Economics 17(1), 5-26.
55.Gallant, A. R., P. E. Rossi, and G. Tauchen, 1992, “Stock Prices and Volumes”, Review of Financial Studies 5, 199-142.
56.Garbade, K. D. and W. L. Silber, 1979, “Structural Organization of Secondary Markets: Clearing Frequency, Dealer Activity and Liquidity Risk”, Journal of Finance 34, 577-593.
57.Gemmill G., 1996, “Transparency and Liquidity: A Study of Block Trades on the London Stock Exchange under Different Publication Rules”, Journal of Finance 51, 1765-1790.
58.Glosten, L. R. and P. R. Milgrom, 1985, “Bid, Ask and Transaction Prices in a Specialist Market with Heterogeneously Informed Traders”, Journal of Financial Economics 14, 71-100.
59.Glosten L. R. and L. Harris, 1988, “Estimating the Components of the Bid/Ask Spread”, Journal of Financial Economics 21(1), 123-124.
60.Glosten, L. R., 1994, “Is the Electronic Open Limit Order Book Inevitable?”, Journal of Finance 49(4), 1127-1162.
61.Grammatikos, T., and A. Saunderrs, 1986, “Futures Price Variability: A Test of Maturity and Volume Effects”, Journal of Business 59, 319-330.
62.Grinblatt, M. and M. Keloharju, 2000, “The Investment Behavior and Performance of Various Investor Types: A Study of Finland’s Unique Data Set” Journal Financial Economics 55(1), 43-67.
63.Hasbrouck, J., 1988, “Trades, Quotes, Inventories, and Information”, Journal of Financial Economics 22, 229-252.
64.Hasbrouck, J., 1991a, “Measuring the Information Content of Stock Trades”, Journal of Finance 46(1), 179-207.
65.Hasbrouck, J., 1991b, “The Summary of Stock Trades: An Econometric Analysis”, Journal of Financial Studies 46(3), 571-595.
66.Handa, P., R. Schwartz and A. Tiwari, 2003, “Quote Setting and Price Formation in an Order Driven Market”, Journal of Financial Markets 6(4), 461-489.
67.Harris, L., 1986, “Cross-Security Tests of the Mixture of Distributions Hypothesis”, Journal of Financial and Quantitative Analysis 21, 39-46.
68.Harris, M. and A. Raviv, 1993, “Differences of Opinion Make a Horse Race”, Review of Financial Studies 6(3), 473-506.
69.Hedge, S. P. and J. B. McDermott, 2000, “Firm Characteristics as Cross-Sectional Determinants of Adverse Selection”, Working Paper, SSRN.
70.Holthausen R.W., R.W. Leftwich and D. Mayers, 1987, “The Effect of Large Block Transactions on Security Prices: A Cross-Sectional Analysis”, Journal of Financial Economics 19, 237-267.
71.Holthausen R.W., R.W. Leftwich and D. Mayers, 1990, “Large Block Transactions, the Speed of Response, and Temporary and Permanent Stock-Price Effects”, Journal of Financial Economics 26, 71-95.
72.Holden, C. W. and A. Subrahmanyam, 1992, “Long-Lived Private Information and Imperfect Competition”, Journal of Finance 47(1), 247-270.
73.Jaffe, J. F. and R. L. Winkler, 1976, “Optimal Speculation against an Efficient Market”, Journal of Finance 31(1), 49-91.
74.Jain, P. C. and G. H. Joh, 1988, “The Dependence between Hourly Prices and Trading Volume”, Journal of Financial and Quantitative Analysis 23, 269-283.
75.Jones, C. M., G. Kual and M. L. Lipson, 1994, “Transactions, Volume and Volatility”, Review of Financial Studies 7, 631-651.
76.Karpoff, J. M., 1986, “A Theory of Trading Volume”, Journal of Finance 41, 1060-1088.
77.Karpoff, J. M., 1987, “The Relation between Price Changes and Trading Volume: A Survey”, Journal of Financial and Quantitative Analysis 22, 109-126.
78.Kaul, G., and M. Nimalendran, 1990, “Price Reversals: Bid-Ask Errors or Market Overreaction?”, Journal of Financial Economics 28(1), 67-93.
79.Keim, D. B. and A. Madhavan, 1995, “Anatomy of the Trading Process: Empirical Evidence on the Behavior of Institutional Traders”, Journal of Financial Economics 37(3), 371-398.
80.Keim D. B. and A. Madhavan, 1996, “The Upstairs Market for Large-Block Transactions: and Measurement of Price Effects”, Review of Financial Studies, 9, 1-36.
81.Kyle, A. S., 1985, “Continuous Auctions and Insider Trading”, Econometrica 53(6), 1315-1335.
82.Kyle, A. S., 1989, “Informed Speculation with Imperfect Competition”, Review of Economic Studies 56, 317-356.
83.Lang, L. H. P. and Y. T. Lee, 1999, “Performance of Various Transaction Frequencies under Call Markets: The Case of Taiwan”, Pacific-Basin Finance Journal 7, 23-39.
84.Lee, C. and M. J. Ready, 1991, “Inferring Trade Direction from Intraday Data”, Journal of Finance 46(2), 733-746.
85.Lee, C. M., B. Mucklow and M. J. Ready, 1993, “Spreads, Depths, and Impact of Earnings Information: An Intraday Analysis”, Review of Financial Studies 6, 345-374.
86.Lee, Y. T., J. C. Lin and Y. J. Liu, 1999, “Trading Patterns of Big versus Small Players in an Emerging Market: An Empirical Analysis”, Journal Banking and Finance 23, 701-725.
87.Lee, Y. T., Robert C. W. Fok and Y. J. Liu, 2001, “Explaining Intraday Pattern of Trading Volume from the Order Flow Data”, Journal of Business Finance and Accounting 28(1-2), 199-230.
88.Lintner, J., 1965, “The Valuation of Risk Assets and the Selection Risky Investment in Stock Portfolios and Capital Budgets”, Review of Economics and Statistics 17(2), 229-245
89.Lo, A. W., and A. C. Mackinlay, 1988, “Stock Market Prices do not Follow Random Walks: Evidence from a Simple Specification Test”, Review of Financial Studies 1(1), 41-66.
90.Lo, A. W., and A. C. Mackinlay, 1989, “Rhe Size and Power the Variance Ratio Test in Finite Samples: A Monte Carlo Investigation”, Journal of Econometrics 40(2), 203-238.
91.Ma, T., 1998, “Trading Frequencies and Stock Market Performance: The Case of Taiwan”, Asia Pacific Journal of Finance 1, 1-25.
92.Ma, Tai, M. H. Hsieh and J. H. Chen, 2000, “The Probability of Informed Trading and the Performance of Stock in an Order-Driven Market”, The Paper of 9th Conference on the Theories and Practices of Securities and Financial Markets.
93.Madhavan, A., 1992, “Trading Mechanisms in Securities Markets”, Journal of Finance 47, 607-641.
94.Madhavan, A., 2000, “Market Microstructure: A Survey”, Journal of Financial Markets 3, 205-258.
95.Madhavan, A., M. Richardson and M. Roomans, 1997, “Why do Security Prices Change? A Transaction-Level Analysis of NYSE Stocks”, Review of Financial Studies 10(4), 1035-1064.
96.Mclnish, T. H. and R. A. Wood, 1992, “An Analysis of Intraday Patterns in Bid/Ask Spreads for NYSE Stocks”, Journal of Finance 47, 753-764.
97.Nyholm, K., 2003, “Inferring the Private Information Content of Trades: A Regime-Switching Approach”, Journal of Applied Econometrics 18, 457-470.
98.O’Hara, M., 2001, “Overview: Market Structure Issues in Market Liquidity”, in Market Liquidity: Proceedings of a Workshop Held at the BIS, BIS Papers 2, 1-8.
99.Schwartz, R. A., 1988, “A Proposal to Stabilize Stock Prices”, Journal of Portfolio Management 15(1), 4-11.
100.Sharpe, W. F., 1964, “Capital Asset Prices: A Theory of Market Equilibrium under Condition of Risk”, Journal of Finace 19, 425-442.
101.Shleifer, A. and L. H. Summers, 1990, “The Noise Trader Approach to Finance”, Journal of Economic Perspectives 4(2), 19-33.
102.Smith, C. J. and R. L. Watts, 1992, “The Investment Opportunity Set and Corporate Financing, Dividend, and Compensation Policies,” Journal of Financial Economics 32(3), 263-292.
103.Stoll, H. R., 1989, “Inferring the Components of the Bid-Ask Spread: Theory and Empirical Tests”, Journal of Finance 44(1), 115-134.
104.Subrahmanyam, A., 1995, “Our Rules versus Discretion in Procedures to Halt Trade”, Journal of Economics and Business 47(1), 1-16.
105.Wang, J. 1993, “A Model of Intertemporal Asset Prices Under Asymmetric Information”, Review of Economics Studies 60, 249-282.
106.Wang F. A., 1998, “Strategic Trading, Asymmetric Information and Heterogeneous Prior Beliefs”, Journal of Financial Markets 1(3), 321-352.
107.Wood, R. A., T. H. McInish and J. K. Ord, 1985, “An Investigation of Transactions Data for NYSE Stock”, Journal of Finance 40, 723-739.
108.Ying, C. C., 1966, “Stock Market Prices and Volumes of Sales”, Econometrica 34, 676-686.
109.Yu, C. H., Y. J. Liu and W. I. Dai, 1998, “The Effect of Taiwan Stock Stabilization Fund under the Military Exercise from Mainland China”, The Paper of 6th Conference on The Theories and Practices of Security and Financial Markets.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top