跳到主要內容

臺灣博碩士論文加值系統

(44.222.218.145) 您好!臺灣時間:2024/03/04 17:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王錦富
研究生(外文):Jin-Fu Wang
論文名稱:以霍普菲爾-坦克類神經網路解決行動代理者規劃問題
論文名稱(外文):A Hopfield-Tank Neural Network Approach to Solving the Mobile Agent Planning Problem
指導教授:林葭華
指導教授(外文):Cha-Hwa Lin
學位類別:碩士
校院名稱:國立中山大學
系所名稱:資訊工程學系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:76
中文關鍵詞:時空最佳化問題行動代理者規劃霍普菲爾-坦克網路動態環境分散式資訊擷取
外文關鍵詞:Spatio-temporal optimization problemMobile agent planningHopfield-Tank neural networkDynamic environmentDistributed information retrieval
相關次數:
  • 被引用被引用:1
  • 點閱點閱:208
  • 評分評分:
  • 下載下載:25
  • 收藏至我的研究室書目清單書目收藏:0
行動代理者規劃逐漸被視為資訊擷取系統中重要的技術之一,可在行動計算環境中提供最小成本的位置感知之服務。雖然霍普菲爾-坦克類神經網路被提出於解決旅行推銷員問題,在研究文獻中對於行動代理者成本最佳化之探討卻甚少考慮有效資源的時間限制。因此,我們假設霍普菲爾-坦克類神經網路可以被利用來解決行動代理者規劃問題。為了驗證此構想,我們改良霍普菲爾-坦克類神經網路和設計一個新的能量函數,不但處理計算環境之動態時間特色,尤其是在安排行動代理者行程時之伺服器效能和網路延遲;而且也滿足基於位置之限制,如旅行行動代理者行程之起訖點必為其本地端網站。更轉換能量函數為李亞普諾夫函數形式以確保收斂至穩定狀態和合法解的存在,設計神經元間之連結加權值計算方式和在動態網路中狀態變數之活化函數以搜尋合法解。此外,並推導目的函數以計算合法解之完成時間和預測最佳行程路徑。模擬並實驗在不同因素,如時間變數和能量函數參數值,以評估提出之模型和演算法。實驗結果顯示,本研究提出的模型和演算法具有快速的計算能力,對於基於位置和時間限制之分散式行動代理者問題,其迅速產生的最佳解可相當接近最小值。本創新之方法所提供的時空整合技術與知識,可望有效改善解決最佳化問題之效率。
Mobile agent planning (MAP) is increasingly viewed as an important technique of information retrieval systems to provide location aware services of minimum cost in mobile computing environment. Although Hopfield-Tank neural network has been proposed for solving the traveling salesperson problem, little attention has been paid to the time constraints on resource validity for optimizing the cost of the mobile agent. Consequently, we hypothesized that Hopfield-Tank neural network can be used to solve the MAP problem. To test this hypothesis, we modify Hopfield-Tank neural network and design a new energy function to not only cope with the dynamic temporal features of the computing environment, in particular the server performance and network latency when scheduling mobile agents, but also satisfy the location-based constraints such as the starting and end node of the routing sequence must be the home site of the traveling mobile agent. In addition, the energy function is reformulated into a Lyapunov function to guarantee the convergent stable state and existence of the valid solution. The connection weights between the neurons and the activation function of state variables in the dynamic network are devised in searching for the valid solutions. Moreover, the objective function is derived to estimate the completion time of the valid solutions and predict the optimal routing path. Simulations study was conducted to evaluate the proposed model and algorithm for different time variables and various coefficient values of the energy function. The experimental results quantitatively demonstrate the computational power and speed of the proposed model by producing solutions that are very close to the minimum costs of the location-based and time-constrained distributed MAP problem rapidly. The spatio-temporal technique proposed in this work is an innovative approach in providing knowledge applicable to improving the effectiveness of solving optimization problems.
CHAPTER 1 INTRODUCTION 1
CHAPTER 2 LITERATURE REVIEW 5
2.1 THE MOBILE AGENT 6
2.2 THE MAP PROBLEM 8
2.3 ARTIFICIAL NEURAL NETWORK 11
2.4 HOPFIELD NEURAL NETWORK 14
2.5 HOPFIELD-TANK NEURAL NETWORK 17
CHAPTER 3 THE MOBILE AGENT PLANNING PROBLEM 22
CHAPTER 4 THE MOBILE AGENT PLANNING MODEL 28
4.1 THE STATE VARIABLES 29
4.2 THE CONSTRAINTS AND PROBLEM GOAL 31
4.3 THE MAP ENERGY FUNCTION 40
4.4 THE CONNECTION WEIGHT MATRICES 46
4.5 THE ACTIVATION FUNCTION 48
4.6 THE MAP ALGORITHM 49
CHAPTER 5 SIMULATION 50
5.1 SIMULATION DESIGN 50
5.2 SIMULATION RESULTS 53
CHAPTER 6 CONCLUSION 63
REFERENCES 65
APPENDIX 67
[1]王進德,蕭大全,類神經網路與模糊控制理論入門,全華科技圖書股份有限公司,September 2003。
[2]葉怡成,類神經網路模式應用與實作,儒林圖書有限公司,October 2004。
[3]Sreeram V. B. Aiyer, Mahesan Niranjan, and Frank Fallside, “A theoretical investigation into the performance of the Hopfield Model,”IEEE Transcations on Neural Networks, Vol. 1, No. 2, pp. 204-215, June 1990.
[4]J. Baek, J. Yeo, G. kim, and H. Yeom, “Cost effective mobile agent planning for distributed information retrieval,” in Proceedings of the 21st International Conference on Distributed Computing Systems, pp. 65 – 72, April 2001.
[5]J. Baek, G. kim, and H. Yeom, “Cost effective planning of timed mobile agent,” in Proceedings of the International Conference on Information Technology: Coding and Computing, pp. 536 – 541, April 2002.
[6]J. Baek, J. Yeo, and H. Yeom, “Agent chaining: An approach to dynamic mobile agent planning,” in Proceedings of the 22nd International Conference on Distributed Computing Systems, pp.579 – 586, July 2002.
[7]J. Baek and H. Yeom, “d-Agent: an approach to mobile agent planning for distributed information retrieval,” IEEE Transactions on Consumer Electronics, Vol. 49, Issue 1, pp. 115 – 122, January 2003.
[8]Biological neuron model, http://www.bioon.com/figure/biology/neuroscience/200408/64929.html.
[9]M. Carey and D. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, Freeman, San Francisco, 1979.
[10]David Chess, Colin Harrison, and Aaron Kershenbaum, ” Mobile Agents:Are They a Good Idea?”, IBM Research Report, March 1995.
[11]E. V. David and T. K. Miller, “ A traveling salesperson objective function that works,” IEEE International Conference on Neural Networks, Vol. 2, pp. 299-303, July 1988.
[12]A. Fuggetta, G.P. Picco, and G. Vigna, “Understanding Code Mobility,” IEEE Transactions on Software Engineering, Vol. 24, No. 5, May 1998.
[13]J.J. Hopfield, “Neural networks and physical systems with emergent collective computational abilities,” in Proceedings of the National Academy of Sciences, Vol. 79, pp. 2554-2558, April 1982.
[14]J. J. Hopfield and D. W. Tank, “''Neural'' computation of decisions in optimization problems,” Biological Cybernetics, Vol. 52, pp. 141 - 152, 1985.
[15]S. Kirkpatric, C. D. Gelatt, Jr., and M. P. Vecchi, “Optimization by Simulated Annealing,” Science, Vol. 220, No. 4598, pp. 671-680, May 1983.
[16]D.B. Lange and M. Oshima, Programming Mobile Agents in Java—with the Java Aglet API, Addison-Wesley, 1998.
[17]D.B. Lange and M. Oshima, “Seven Good Reasons for Mobile Agents: Dispatch Your Agents, Shut off Your Machine,” Communications of the ACM, Vol. 42, No. 3, pp. 88-89, March 1999.
[18]Cha-Hwa Lin and Jin-Fu Wang, “Solving the Mobile Agent Planning Problem with a Hopfield-Tank Neural Network,” in Proceedings of the International MultiConference of Engineers and Computer Scientists 2006, pp. 104-114, 20-22 June, 2006.
[19]Jacek Mañdziuk, “Solving the Traveling Salesperson Problem with Hopfield – type neural network,” Demonstration Mathematica, Vol. 29, NO. 1, pp. 219-231, 1996.
[20]Katsuhiro Moizumi, Mobile Agent Planning Problems, PhD thesis, Thayer School of Engineering, Dartmouth College, November 1998.
[21]M. Takeda and J.W. Goodman, “Neural networks for computation: number representations and programming complexity,” Applied Optics, Vol. 25, No. 18, 15 September 1986.
[22]P. Talavan and J. Yanez, “Parameter setting of the Hopfield network applied to TSP,” Neural Networks, Vol. 15, pp. 363-373, 2002.
[23]The Mobile Agent List, http://reinsburgstrasse.dyndns.org/mal/preview/preview.html.
[24]Bo Yang, Da-You Liu, Kun Yang, and Sheng-Sheng Wang, “Strategically migrating agents in itinerary graph,” in Proceedings of the Second International Conference Machine Learning and Cybernetics, 2-5 November 2003.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top