跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/10 23:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李宗翰
研究生(外文):Chung-Han Lee
論文名稱:以時間曆為基礎的移動群組型態探勘
論文名稱(外文):The Discovery of Calendar-Based Mobile Group Patterns in Spatial-Temporal Databases
指導教授:黃三益黃三益引用關係
指導教授(外文):San-Yih Hwang
學位類別:碩士
校院名稱:國立中山大學
系所名稱:資訊管理學系研究所
學門:電算機學門
學類:電算機一般學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:57
中文關鍵詞:時間群組
外文關鍵詞:calendar patterngroup pattern miningmobile group pattern
相關次數:
  • 被引用被引用:0
  • 點閱點閱:134
  • 評分評分:
  • 下載下載:19
  • 收藏至我的研究室書目清單書目收藏:1
近幾年來,由於行動設備的普及,以及相關設備軟硬體的發展,行動資料已可廣泛取得,根據地理資訊判斷物體是否為同一群組是一個新興的研究。本研究考量在時間與空間兩個面向上,移動群組的發掘。先前的研究將時間視為整段區塊或是簡單的時間循環,但是考慮到一般群組的聚集情況往往遵循某個時間型態,尤其是人類的群組的出現情況,常與約定俗成的時間曆有關,但卻又不一定嚴格遵守特定的規律。所以我們提出一個更具彈性的時間曆表示法(flexible calendar pattern),並針對建構在新的時間面向表示法上的移動群組發掘發展出有效率的演算法。本文以IBM City Simulator產生的合成資料進行演算法的效率評估。實驗結果證明本研究所提出的方法可以有效的降低所需的執行時間。
In the past few years, due to the development of the mobile devices and the improvement of database technology, the geometric information has become widely available. Identifying object groups based on spatial-temporal dimension is an emerging research topic. Previous work has incorporating the spatial and temporal information pertaining to moving objects in finding mobile groups. Considering that mobile groups tend to exhibit some calendar-like temporal features, we define a new temporal presentation mechanism called flexible calendar pattern, which allows users to specify the desired calendar patterns at a coarse level. In addition, we developed efficient algorithms for mining mobile groups pertaining some user-specified flexible calendar pattern. The proposed algorithms are evaluated via the synthetic data generated by IBM City Simulator. The results show that our approaches prove to perform more efficiently than other intuitive approaches.
CHAPTER 1 INTRODUCTION 5
1.1 BACKGROUND 5
1.2 MOTIVATION 6
1.3 THESIS OUTLINE 6
CHAPTER 2 LITERATURE REVIEW 9
2.1 MOBILE GROUP MINING 9
2.2 TEMPORAL ASSOCIATION RULE MINING 10
2.3 CALENDAR-BASED SPATIO-TEMPORAL ASSOCIATION RULE MINING 12
CHAPTER 3 THE PROBLEM 20
3.1 AUXILIARY DEFINITIONS 20
3.2 THE MINING PROBLEM 23
CHAPTER 4 THE MINING ALGORITHMS 26
4.1 CAGP 26
4.2 CVG-GROWTH 33
CHAPTER 5 PERFORMANCE EVALUATION 39
5.1 EXPERIMENTAL DESIGN 39
5.2 EVALUATING CAGP 42
5.3 EVALUATING CVG-GROWTH 46
5.4 COMPARING CAGP AND CVG-GROWTH 49
CHAPTER 6 CONCLUSIONS 52
REFERENCES 53
[AIS93] R. Agrawal, T. Imilienski, and A. Swami, “Mining association rules between sets of items in large databases,” In Proceedings of the ACM SIGMOD International Conference on Management of Database, pp. 207-216, 1993.
[AS94] R. Agrawal and R. Srikant, “Fast algorithms for mining association rules,” In Proceedings of the VLDB Conference, pp. 478-499, Sept 1994.
[AS95] R. Agrawal and R. Srikant. Mining Sequential Patterns. In Proc. of 11th ICDE,
1995.
[BJW00] C. Bettini, S. G. Jajodia, and S. X. Wang, Time Granularities in Databases, Data Mining and Temporal Reasoning, Springer-Verlag New York Inc, 2000.
[BS00] C. Bettini and R. D. Sibi. “Symbolic representation of user-defined time granularities.” Annals of Mathematics and Artificial Intelligence, 30, 53–92, 2000.
[Chou05] Y. P. Chou “The Discovery of Calendar-Based Mobile Groups,” master thesis, National Sun Yat-sen University, Kaohsiung, Taiwan, 2005.
[DRF05] D. R. Forsyth, Group dynamics. Belmont: Brooks & Cole.
[FLM86] D. Foster, B. Leban and D. McDonald. “A representation for collections of temporal intervals.” In Proceedings of the American National Conference on Artificial Intelligence, pp. 367–371, 1986.
[GT04] John Goh, David Taniar, “Mining Frequency Pattern from Mobile Users,” Proc. Knowledge-Based Intelligent Information & Eng. Sys, LNCS( 3215), Jan 2004, pp 795 – 801.
[HLC05] S. Y. Hwang, Y. H. Liu, J. K. Chiu and E. P. Lim, “Mining Mobile Group Patterns: A Trajectory-based Approach,” In Proceedings of the 9th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD05), Hanoi, Vietnam, 2005.
[IS03] G. S. Iwerks, H. Samet, and K. Smith. “Continuous k-nearest neighbor queries for continuously moving points with updates.” In Proceedings of the 2003 International Conference on Very Large Data Base, 2003.
[LMF86] B. Leban, D. McDonald, and D. Foster, “A representation for collections of temporal intervals,” In Proceedings of the 5th International Conference on Artificial Intelligence, pp. 367-371, 1986.
[LN03] Y. Li, P. Ning, X. S. Wang, and S. Jajodia, “Discovering Calendar-based Temporal Association Rules,” Data and Knowledge Engineering, pp. 192-218, 2003.
[LWOH03] E.-P. Lim, Y. Wang, K.-L. Ong, and San-Yih Hwang. “In Search of Knowledge About Mobile Users.” ERCIM News, vol. 1, no. 54, pp. 10, 2003.
[NS93] M. Niezette and J. Stevenne. “An efficient symbolic representation of periodic time.” In Proceeding of the International Conference on Information and Knowledge Management, LNCS( 752), pp. 161–168, 1993.
[NWJ02] Peng Ning, Xiaoyang Sean Wang and Sushil Jajodia “An Algebraic Representation of Calendars”, Annals of Mathematics and Artificial Intelligence 36: pp. 5–38, 2002.
[ORS98] B. Özden, S. Ramaswamy, and A. Sillberschatz, “Cyclic association rules,” In Proceedings of the 14th International Conference on Data Engineering, pp. 412-421, Feb 1998.
[RMS98] S. Ramaswamy, S. Mahajan, and A. Sillberschatz, “On the discovery of interesting patterns in association rules,” In Proceedings of the 1998 International Conference on Very Large Data Base, pp. 368-379, Aug 1998.
[SJL00] S. Saltenis, C.S. Jensen, S.T. Leutenegger, M.A. Lopez, “Indexing the positions of continuously moving objects,” In Proceedings. of 2000 ACM SIGMOD Conference, 2000.
[TP02] Y. Tao and D. Papadias. “Time-parameterized queries in spatial-temporal databases.” In Proceedings. of 2002 ACM SIGMOD Conference, 2002.
[WLH03] Y. Wang, E. P. Lim, and S.Y. Hwang, “On Mining Group Patterns of Mobile Users,” In Proceedings Of the 14th International Conference on Database and Expert Systems Applications (DEXA 2003), pp. 1-5, 2003.
[WLH04]Y. Wang, E. P. Lim, and S. Y. Hwang, “Efficient Group Pattern Mining Using Data Summarization,” In Proceedings of the 9th International Conference on Database Systems for Advanced Application (DASFAA2004), Seoul, Korea, 2004.
[WSCY99]O. Wolfson, A. P. Sistla, S. Chamberlain, Y. Yesha, “Updating and querying databases that track mobile units,” Distributed and Parallel Databases, vol. 7, no. 3, 1999.
[ZSA02] G. Zimbrão, J. M. de Souza, V. T. de Almeida, W. A. da Silva, “An algorithm to discover calendar-based temporal association rules with item''s lifespan restriction”, In Proceedings of the Eight ACM SIGKDD International Conference on Knowledge Discovery and Data Mining - 2nd Workshop on Temporal Data Mining, pp. 701–706, 2002.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 張正芬(1997)。自閉症兒童的行為輔導-功能性評量的運用。特殊教育季刊,65,1-7。
2. 林貴美(1998)。簡介阿司佩格症學生。國民教育,39(2),48-51。
3. 鳳華(1999)。功能性行為評估(Functional behavioral assessment)之意涵與實務。特教園丁,15(1), 18-26。
4. 葛竹婷(2003)。無障礙教育:從建立校園正向行為支持系統談起。教師天地,125,30-31。
5. 楊宗仁(1998)。自閉症研究的新趨勢。特教新知通訊,5(5),116-118。
6. 胡永崇(1998)。嚴重行為問題的功能分析。特教園丁,14,8-14。
7. 廖彩萍(2005)。認識另類星兒-淺談亞斯伯格症。花蓮師院特教通訊,33,22-26。
8. 鄒小蘭(2003)。自閉症族群中的資優生-高功能自閉症與亞斯勃格症。國小特殊教育,35,50-59。
9. 陳昭儀(1995)。高功能自閉症者的特質、爭議性的領域、診斷標準、追蹤研究及預後因素的探討。特殊教育與復健學報,4,299-312。
10. 陳東陞(1994)。近三十年來對自閉症兒童行為治療法的研究。特殊教育季刊,52,1-6。
11. 張俊紳(1992)。教學過程中時間變項的控制。國教之聲,26(2),22-30。
12. 張正芬(2000)。自閉症兒童問題行為功能之探討。特殊教育研究學刊,18,127-150。
13. 宋維村(1994)。自閉症診斷的演進及其在教育上的意義。教師天地, 73, 22-28。