跳到主要內容

臺灣博碩士論文加值系統

(44.220.255.141) 您好!臺灣時間:2024/11/14 06:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃信傑
研究生(外文):Hsin-Chieh Huang
論文名稱:以協同過濾輔助內容分析之文件推薦系統
論文名稱(外文):A Content via Collaboration Approach to Text Filtering Recommender Systems
指導教授:張德民張德民引用關係
指導教授(外文):Te-Min Chang
學位類別:碩士
校院名稱:國立中山大學
系所名稱:資訊管理學系研究所
學門:電算機學門
學類:電算機一般學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:53
中文關鍵詞:潛在語意索引內容為主的過濾推薦系統協同過濾
外文關鍵詞:recommender systemscollaborative filteringcontent-based filteringLSI
相關次數:
  • 被引用被引用:4
  • 點閱點閱:369
  • 評分評分:
  • 下載下載:112
  • 收藏至我的研究室書目清單書目收藏:2
隨著網際網路及電子商務的興起,大量的資訊充斥於網路上。面對這些資訊,使用者需要適當的工具來處理資訊的超載。就像我們每天處理決策過程會依賴推薦的行為,線上使用者也可以藉由其它有共同興趣使用者的推薦或是依循自己過去喜好的推薦而更快速、更準確地找尋所需的資訊。
傳統的推薦系統可分為協同過濾和內容為主過濾這兩種方法,但由於各有各的缺點,推薦系統便走向混合式的方式,希望能在保留自己的優點時也能解決各自的問題。所以本研究的目的在於提出一個混合式的文件推薦方法,結合其它有共同興趣使用者的喜好與使用者原本的喜好一起做推薦。本研究分為兩階段,第一階段將使用者原本的喜好藉由協同過濾來拓展使用者的喜好,在第二階段則是從拓展的喜好來建立使用者對文件字詞的喜好,再利用潛在語意索引提高推薦結果的準確率。
本研究提出兩個實驗來驗證,實驗的目的是比較本研究所提方法與其它二種推薦方法的表現。實驗的結果顯示,我們提出的方法能夠區別使用者不同喜好的程度,既可以推薦使用者喜歡的文件,也可以避免推薦使用者不喜歡的文件。這樣的特性使得本研究所提方法在實務上更具實用性。
Ever since the rapid growth of the Internet, recommender systems have become essential in helping online users to search and retrieve relevant information they need. Just like the situation that people rely heavily on recommendation in their daily decision making processes, online users may identify desired documents more effectively and efficiently through recommendation of other users who exhibit similar interests, and/or through extracting crucial features of the users’ past preferences.
Typical recommendation approaches can be classified into collaborative filtering and content-based filtering. Both approaches, however, have their own drawbacks. The purpose of this research is thus to propose a hybrid approach for text recommendations. We combine collaborative input and document content to facilitate the creation of extended content-based user profiles. These profiles are then rearranged with the technique of latent semantic indexing.
Two experiments are conducted to verify our proposed approach. The objective of these experiments is to compare the recommendation results from our proposed approach with those from the other two approaches. The results show that our approach is capable of distinguishing different degrees of document preference, and makes appropriate recommendation to users or does not make recommendation to users for uninterested documents. The application of our proposed approach is justified accordingly.
CHAPTER 1 Introduction......................................................................................................1
1.1 Overview......................................................................................................................1
1.2 Objective of the research.............................................................................................2
1.3 Organization of the Thesis...........................................................................................2
CHAPTER 2 Literature Review.............................................................................................4
2.1 Information Retrieval...................................................................................................4
Vector space models...................................................................................................4
Latent semantic indexing...........................................................................................5
2.2 Text mining..................................................................................................................6
Novelty Detection......................................................................................................7
Concept Extraction.....................................................................................................8
2.3 Content-Based Filtering...............................................................................................8
Content limitation....................................................................................................10
Over-specialization..................................................................................................10
2.4 Collaborative Filtering...............................................................................................10
User-based collaborative filtering............................................................................11
Item-based collaborative filtering............................................................................12
First-rater Problem...................................................................................................13
Sparsity....................................................................................................................13
Other Issues..............................................................................................................14
2.5 Hybrid Filtering Approaches......................................................................................14
CHAPTER 3 Proposed Approach........................................................................................16
3.1 Stage 1: Item-based CF..............................................................................................18
Step 1: Building Item-to-Item Similarity Matrix.....................................................19
Step 2: Generating top-N Recommendation List.....................................................21
Step 3: Adding top-N Recommendation to Original Ratings..................................22
3.2 Stage 2: Collaborative-Incorporated Content-based Filtering...................................22
Step 1: Building profile-construction matrix...........................................................23
Step 2: Creating content-based user profiles...........................................................24
Step 3: Applying LSI...............................................................................................26
Step 4: Determining relevance of new documents..................................................27
CHAPTER 4 Experiments and Results...............................................................................28
4.1 Dataset Descriptions..................................................................................................28
4.2 Experimental Design..................................................................................................30
4.3 Experiment I...............................................................................................................31
4.4 Experiment II.............................................................................................................34
CHAPTER 5 Conclusions.....................................................................................................40
5.1 Concluding remarks...................................................................................................40
5.2 Future Work...............................................................................................................41
References..............................................................................................................................43
林子翔, 以漸進式方法探究網際網路中資訊涵義之研究,中山大學資訊管理研究所碩士論文,民94
Adomavicius, G and Tuzhilin, A “Towards the Next Generation of Recommender Systems: A Survey of the State-of-the-Art and Possible Extensions." IEEE Transactions on Knowledge and Data Engineering, vol. 17, no. 6, June 2005
Allan, J., Carbonell, J., Doddington, G., Yamron, J., and Yang, Y., “Topic detection and tracking pilot study: Final report,” In Proceedings of the DARPA Broadcast News Transcription and Understanding Workshop, 1998
Baeza-Yates, R and Ribeiro-Neto, B, Modern Information Retrieval. Addison-Wesley, 1999.
Balabanovic, M and Shoham, Y, “Fab: Content-Based, Collaborative Recommendation,” Comm. ACM, vol. 40, no. 3, pp. 66-72, 1997.
Chen, H., Lynch, K. J. Automatic Construction of Networks of Concepts Characterizing Document Database. IEEE Transaction on Systems, Man and Cybernetics, Vol. 22 No. 5, 1992, pp. 885-902
Deerwester, Scott; Dumais, Susan T.; Furnas, George W.; Landauer, Thomas K. and Harshman, Richard, “Indexing by latent semantic indexing,” Journal of the American Society for Information Science, Vol. 41, No. 6, 1990
Deshpande, M and Karypis, G, “Item-Based Top-N Recommendation Algorithms,” ACM Trans. Information Systems, vol. 22, no. 1, pp. 143-177, 2004
Halliday, M. A.K. and Hansan, R., Cohesion in English, Longman, 1976
Golub, G. and Van Loan, C., “Matrix Computations. Johns-Hopkins,” Baltimore, Maryland, second edition, 1989.
Grobelnik, M., and Mladenic, D., Natasa Milic-Frayling, “Text Mining as Integration of Several Related Research Areas: Report on KDD''2000 Workshop on Text Mining,” SIGKDD Explorations, Vol. 2, No. 2 , 2000, pp. 99-102
Kontostathis, April and William M. Pottenger, “Detecting Patterns in the LSI Term-Term Matrix,” Workshop on the Foundation of Data Mining and Discovery, The 2002 IEEE International Conference on Data Mining, 2002, pp.243-248
Melville, P., Mooney, R. J., and Nagarajan, R., “Content-Boosted Collaborative Filtering for Improved Recommendations,” Proc. 18th Nat’l Conf. Artificial Intelligence, 2002.
43
Morris, J. and Hirst, G., “Lexical Cohesion Computed by Thesaural Relations as Indicator of the Structure of Text,” Computational Linguistics, Vol. 17, No. 1, 1991, pp 21-48
Ohsawa, Y., “The Scope of Chance Discovery,” New Frontiers in Artificial Intelligence: Joint JSAI 2001 Workshop Post-Proceedings, 2001, pp 413
Pazzani, M, “A Framework for Collaborative, Content-Based, and Demographic Filtering, Artificial Intelligence Rev., pp. 393-408, Dec. 1999.
Pazzani, M and Billsus, D, “Learning and Revising User Profiles:The Identification of Interesting Web Sites,” Machine Learning, vol. 27, pp. 313-331, 1997.
Salton, G, Wong, A, and Yang, C. S., “A vector space model for automatic indexing,” Communications of the ACM. Vol.18, 1975.
Sarwar, B, Karypis, G, Konstan, J, and Riedl, J, “Application of Dimensionality Reduction in Recommender Systems—A Case Study,” Proc. ACM WebKDD Workshop, 2000.
Shardanand, U and Maes, P, “Social Information Filtering:Algorithms for Automating ‘Word of Mouth’,” Proc. Conf. Human Factors in Computing Systems, 1995.
Soboroff, I and Nicholas, C, “Combining Content and Collaboration in Text Filtering,” Proc. Int’l Joint Conf. Artificial Intelligence Workshop: Machine Learning for Information Filtering, Aug. 1999.
Zhang, Zhenxue and Zhang, Dongsong. What Will You Like? Ask People Who Are Like You: Past and Future Research on Collaborative Filtering in Recommender Systems. The Fourth Workshop on e-Business, Dec.10, 2005. Las Vegas, Nevada.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 張振成(2001a)。生命教育的本質與實施。教育資料與研究,39,49-52。
2. 張淑美(2000)。生命教育與生死教育實施概況與省思-以台灣省與高雄市中等學校教師對生命教育或生死教育實施現況之調查研究為例,教育研究資訊,8(3),72-90。
3. 張郁芬(2001)。生命教育的理念探究與實施。教師之友,42(2),15-21。
4. 林勝義(2001)。國內志願服務教育訓練之評鑑。社區發展季刊,93,211-215。
5. 沈六(1999)。美國的服務學習。訓育研究,91-100。
6. 吳庶深(2001c)。活出生命的彩虹談—生命教育的意義。研習資訊,19(5),
7. 吳庶深(2001b)。每個學生都能成功—真正的生命教育,選擇爲生命而教育。學生輔導通訊,79,161-164。
8. 吳武雄(1999)。推展生命教育回歸教育本質。高中教育,7,10-15。
9. 張淑美(2001a)。國小教師對生死教育的看法與需求--以高雄市「國小生命教育研習班」為例。教育研究,85,54-65。
10. 張淑美(2001b)。國中生的生命教育--從死亡概念與態度論國中階段生死教育之實施。教育資料集刊,26,355-375。
11. 張淑美(2002)。「生死教育」就是善生善終的「生命教育」。輔導通訊,69,頁8-13。
12. 陳芳玲(1998)。生命教育課程之探究。輔導通訊,55,29-34。
13. 黃玉(2001)。服務學習—公民教育的具體實踐。人文及社會學科教學通訊,12(3),20-42。
14. 黃明月(1999)。服務性學習與婦女教育。成人教育,52,31-38。
15. 黃明月(2000)。成人經驗學習理論之探討。社會教育學刊,29,35-56。