跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.170) 您好!臺灣時間:2024/12/02 15:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林浩翔
研究生(外文):Hao-hsiang Lin
論文名稱:偏好引導的情境式文件分群技術:字詞關係及統計式字典之影響
論文名稱(外文):Preference-Anchored Document Clustering Technique: Effects of Term Relationships and Thesaurus
指導教授:魏志平魏志平引用關係
指導教授(外文):Chih-Ping Wei
學位類別:碩士
校院名稱:國立中山大學
系所名稱:資訊管理學系研究所
學門:電算機學門
學類:電算機一般學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:50
中文關鍵詞:文字探勘階層式文件分群文件分群個人化文件分群以偏好為基礎的文件分群技術
外文關鍵詞:Personalized document clusteringDocument clusteringPreference-based document clusteringText miningHierarchical agglomerative clustering (HAC)
相關次數:
  • 被引用被引用:1
  • 點閱點閱:219
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
根據情境式文件分群理論,個人的文件分群行為不單純只是考量文件的屬性(包含內容),也取決於個人在什麼樣任務和情境之下進行分群。因此,有效的文件分群技術必須能夠考量使用者不同的偏好觀點,進而產生特定偏好的分群結果。偏好引導的情境式文件分群技術(PAC)支援以偏好為基礎的文件分群,並且考量使用者的分群偏好產生特定偏好的分群結果。而本文主要針對PAC探討兩個研究議題:(1)不同的字詞關係是否可以增進PAC的效能以及(2)不同的語料庫所建構出來的統計式字典是否可以增進PAC的效能。實證的結果顯示,在完整的群集標註詞(Anchoring terms)前提下,本文所提出來的方法和PAC具有相同的分群效能,然而隨著群集標註詞(Anchoring terms)的減少,並沒有辦法到達和PAC相同的分群效能,甚至產生較差的分群效能。實證的結果也顯示使用較大的語料庫所建構出來的統計式字典沒有辦法增進PAC的分群效能。
According to the context theory of classification, the document-clustering behaviors of individuals not only involve the attributes (including contents) of documents but also depend on who is doing the task and in what context. Thus, effective document-clustering techniques need to be able to take into account users’ categorization preferences and thus can generate document clusters from different preferential perspectives. The Preference-Anchored Document Clustering (PAC) technique was proposed for supporting preference-based document-clustering. Specifically, PAC takes a user’s categorization preference into consideration and subsequently generates a set of document clusters from this specific preferential perspective. In this study, we attempt to investigate two research questions concerning the PAC technique. The first research question investigates “whether the incorporation of the broader-term expansion (i.e., the proposed PAC2 technique in this study) will improve the effectiveness of preference-based document-clustering, whereas the second research question is “whether the use of a statistical-based thesaurus constructed from a larger document corpus will improve the effectiveness of preference-based document-clustering.” Compared with the effectiveness achieved by PAC, our empirical results show that the proposed PAC2 technique neither improves nor deteriorates the effectiveness of preference-based document-clustering when the complete set of anchoring terms is used. However, when only a partial set of anchoring terms is provided, PAC2 cannot improve and even deteriorate the effectiveness of preference-based document-clustering. As to the second research question, our empirical results suggest the use of a statistical-based thesaurus constructed from a larger document corpus (i.e., the ACM corpus consisting of 14,729 documents) does not improve the effectiveness of PAC and PAC2 for preference-based document-clustering.
CHAPTER 1 INTRODUCTION
1.1 Background
1.2 Research Motivation and Objectives
1.3 Organization of the Thesis
CHAPTER 2 LITERATURE REVIEW
2.1 Content-based Document Clustering Techniques
2.2 Preference-Anchored Document Clustering (PAC) Technique
CHAPTER 3 DESIGN OF PREFERENCE-ANCHORED DOCUMENT CLUSTERING (PAC2) TECHNIQUE
3.1 Statistical-based Thesaurus Construction
3.2 Preference Expansion
3.3 Document Representation
3.4 Clustering
CHAPTER 4 EMPIRICAL EVALUATIONS
4.1 Collection of Document Corpora
4.2 Collection of Users'' Preferred Clustering
4.3 Evaluation Criteria and Procedure
4.4 Experiment 1: Effectiveness of PAC2 vs. PAC
4.4.1 Tuning of Traditional Content-based Document-Clustering Technique
4.4.2 Tuning of PAC and PAC2 Techniques
4.4.3 Comparative Evaluation
4.5 Experiment 2: Effects of Thesaurus on PAC and PAC2
4.5.1 Tuning of PAC and PAC2 Techniques
4.5.2 Comparative Evaluation
CHAPTER 5 CONCLUSION AND FUTURE RESEARCH DIRECTIONS
REFERENCES
[A73]Anderberg, M.R., Cluster Analysis for Applications, Academic Press, Inc., New York, NY, 1973.
[B91]Barreau, D.K., “Context as A Factor in Personal Information Management Systems. Journal of the American Society for Information Science, 46, 5 (June 1991), pp.327-339.
[B92]Brill, E., “A Simple Rule-based Part of Speech Tagger,” In Proceedings of the Third Conference on Applied Natural Language Processing, Association for Computational Linguistics, Trento, Italy, 1992, pp.152-155.
[B94]Brill, E., “Some Advances in Rule-based Part of Speech Tagging,” In Proceedings of the Twelfth National Conference on Artificial Intelligence (AAAI-94), AAAI Press, Seattle, WA, 1994, pp. 722-727.
[BGG99]Boley, D., Gini, M., Gross, R., Han, E., Hastings, K., Karypis, G., Kumar, V., Mobasher, B., and Moore, L., “Partitioning-based Clustering for Web Document Categorization,” Decision Support Systems, 27, 3 (1999), pp.329-341.
[C91]Case, D.O., “Conceptual Organization and Retrieval of Text by Historians: The Role of Memory and Metaphor,” Journal of the American Society for Information Science, 42, 9 (October 1991), pp.657-668.
[CKP92]Cutting, D., Karger, D., Pedersen, J., and Tukey, J., “Scatter/Gather: A Cluster-based Approach to Browsing Large Document Collections,” In Proceedings of 15th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, 1992, pp.318-329.
[D91]Donovan, J., “Patrons Expectations about Collocation: Measuring the Difference between Psychologically Real and the Really Real,” Cataloging and Classification Quarterly, 13, 2 (1991), pp.23-43.
[EW86]El-Hamdouchi, A. and Willett, P., “Hierarchical document clustering using Ward’s method.” In Proceedings of ACM Conference on Research and Development in Information Retrieval, 1986, pp.149-156.
[JMF99]Jain, A. K., Murty, M. N., and Flynn, P. J., “Data Clustering: A Review,” ACM Computing Surveys, 31, 3 (1999), pp.265-323.
[JC94]Jing, Y. and Croft, W. B., “An Association Thesaurus for Information Retrieval,” Technical Report, Department of Computer Science, University of Massachusetts at Amherst, 1994.
[KR90]Kaufman, L. and Rousseeuw, P. J., Finding Groups in Data: An Introduction to Cluster Analysis, John Wiley & Sons, New York, NY, 1990.
[K89]Kohonen, T., Self-Organization and Associative Memory, Springer, Berlin, Germany, 1989.
[K95]Kohonen, T., Self-Organizing Maps, Springer, Berlin, Germany, 1995.
[K91]Kwasnik, B.H., “The Importance of Factors that Are Not Document Attributes in the Organization of Personal Documents,” Journal of Documentation, 47 (1991), pp.389-398.
[LHK96]Lagus, K., Honkela, T., Kaski, S., and Kohonen, T., “Self-organizing Maps of Document Collections: A New Approach to Interactive Exploration,” In Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining, 1996, pp. 238-243.
[L87]Lakoff, G. Women, Fire and Dangerous Things: What Categories Reveal about the Mind. Chicago: University of Chicago Press, 1987.
[LA99]Larsen, B. and Aone, C., “Fast and Effective Text Mining Using Linear-time Document Clustering,” In Proceedings of the 5th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 1999, pp.16-22.
[LCN99]Lin, C., Chen, H., and Nunamaker, J.F., “Verifying the Proximity and Size Hypothesis for Self-organizing Maps,” Journal of Management Information Systems, 16, 3 (Winter 1999-2000), pp.57-70.
[M88]Mackay, W.E., “Diversity in the Use of Electronic Mail: A Preliminary Inquiry,” ACM Transactions on Office Information Systems, 6, 4 (1988), pp.380-397.
[M00]Mackay, W.E., “Responding to Cognitive Overload: Co-adaptation between Users and Technology,” Intellectica, 30, 1 (2000), pp.177-193.
[OCI04]Quiroga, L.M., Crosby, M.E., and Iding, M.K., “Reducing Cognitive Load,” In Proceedings of the 37th Hawaii International Conference on Systems Sciences, 2004.
[Q68]Quillian, M.R., “Semantic Memory,” In Semantic Information Processing, M. Minsky (ed.), Cambridge, MA: The MIT Press, 1968, pp.227-270.
[R86]Restorick, F.M., “Novel Filing Systems Applicable to An Automated Office: A State-of-the-art Study,” Information Processing and Management, 22 (1986), pp.151-172.
[RC99]Roussinov, D.G. and Chen, H., “Document Clustering for Electronic Meetings: An Experimental Comparison of Two Techniques,” Decision Support Systems, 27, 1-2 (1999), pp.67-79.
[RM99]Rauber, A. and Merkl, D., “Using Self-organizing Maps to Organize Document Archives and to Characterize Subject Matters: How to Make A Map Tell the News of the World,” In Proceedings of the 10th International Conference on Database and Expert Systems Applications (DEXA’99), Florence, Italy, 1999, pp.302-311.
[RP97]Rucker, J. and Polanco, M.J., “Siteseer: Personalized Navigation for the Web,” Communications of the ACM, 40, 3 (March 1997), pp.73-75.
[TB99]Talavera, L. and Bejar, J., “Integrating Declarative Knowledge in Hierarchical Clustering Tasks.” In Proceedings of the 3rd International Symposium on Intelligent Data Analysis, 1999, pp.211-222.
[V86]Voorhees, E.M., “Implementing Agglomerative Hierarchical Clustering Algorithms for Use in Document Retrieval,” Information Processing and Management,” 22 (1986), pp.465-476.
[V93]Voutilainen, A, “Nptool: A Detector of English Noun Phrases,” In Proceedings of Workshop on Very Large Corpora, Columbus, Ohio, June 1993, pp.48-57.
[WHD02]Wei, C., Hu, P., and Dong, Y. X., “Managing Document Categories in E-commerce Environments: An Evolution-based Approach,” European Journal of Information Systems, 11, 3 (2002), pp.208-222.
[WW06]Wei, C. and Wang, S., “Preference-Anchored Document Clustering Technique for Supporting Effective Knowledge Management,” In Proceedings of the 4th Workshop on Knowledge Economy and Electronic Commerce, Kaohsiung, Taiwan, April 2006.
[WYH05]Wei, C., Yang, C. S., Hsiao, H. W., and Cheng, T. H., “Combining Preference- and Content-based Approaches for Improving Document Clustering Effectiveness,” Information Processing and Management, 42, 2 (March 2006), pp.350-372.
[YL03]Yang, C. C. and Luk J., “Automatic Generation of English/Chinese Thesaurus Based on a Parallel Corpus in Laws,” Journal of the American Society for Information Science and Technology, 54, 7 (2003), pp. 671-682.
[YC94]Yang, Y. and Chute, C.G., “An Example-based Mapping Method for Text Categorization and Retrieval,” ACM Transactions on Information Systems, 12, 3 (1994), pp.252-277.
[YP97]Yang, Y. and Pedersen, J. O., “A Comparative Study on Feature Selection in Text Categorization,” Proceedings of 14th International Conference on Machine Learning, Nashville, TN: Morgan Kaufmann, 1997, pp.412-420.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top