一、中文部份
1.方淳民、毛昭家,「基地之外場維修及品質管理探討」,空軍學術月刊,第573期,2004年。2.侯光華,「長時間高溫使用之Inconel 718熱影響區裂紋成因與銲補製程研究」,行政院國家科學委員會專題研究計畫報告,NSC89-2216-E182-017,2001年。
3.柳耀華、張仁孚、蔡源成,「新世代武器系統自主式後勤支援管理架構概述與實例研究」,海軍學術月刊,第39卷,第2期,2005年。4.郭祥之,「散熱風扇之性能曲線擬合分析」,中原大學機械工程學系碩士論文,2005年。5.陳寬裕、何嘉惠、蕭宏誠,「應用支援向量回歸於國際旅遊需求之預測」,旅遊管理研究,第4卷,第1期,2004年,頁81- 97。6.韓歆儀,「應用兩階段分類法提昇SVM法之分類準確率」,國立成功大學工業與資訊管理研究所碩士論文,2004年。二、英文部份
1.Boyce, M. P., Gas Turbine Engineering Handbook, Gulf Professional Publishing, Houston, TX, 2001.
2.Carter, T. J., “Common Failures in Gas Turbine Blades,” Engineering Failure Analysis, Vol. 12, No. 2, 2005, pp.237-247.
3.Davies, P. C., “Design Issues in Neural Network Development,” Neurovest Journal, Vol. 5, No. 1, 1994, pp.21-25.
4.Denny, G., “F16 Jet Engine Trending and Diagnostics with Neural Networks,” Proceedings of the SPIE (International Society for Optical Engineering), 1993, pp.419-422.
5.Dietz, W. E., Kiech, E. L., and Ali, M., “Jet and Rocket Engine Fault Diagnosis in Real Time,” Journal of Neural Network Computing, Vol. 1, No. 1, 1989, pp.5-18.
6.Fish, K. E., Barnes, J. H., and Aiken, M. W., “Artificial Neural Networks - A New Methodology for Industrial Market Segmentation,” Industrial Marketing Management, Vol. 24, No. 5, 1995, pp.431-438.
7.Frank, E., Wang, Y., Inglis, S., Holmes, G., and Witten, I. H., “Using Model Trees for Classification,” Machine Learning, Vol. 32, No. 1, 1998, pp.63-76.
8.Freeman, J. A. and Skapura, D. M., Neural Networks Algorithms, Applications, and Programming Techniques, Addison-Wesley, Reading, MA, 1992.
9.GE Industrial Sensing, “Humidity Measurement in Gas Turbines,” Application Note 930-105A, April 2005 (available at: http://www.gesensing.com/products/ resources/application_notes_new/930-105A.pdf).
10.General Electric Company, “CT7-2D1 Turboshaft Engines Operating Instruction,” Revision 6, SEI-569, GE Aircraft Engines Customer Technical Training, June 1989.
11.Gunn, S. R., “Support Vector Machines for Classification and Regression,” Technical Report, Department of Electronics and Computer Science, University of Southampton, 1998.
12.Hatsipantelis, E., Murray, A., and Penman, J., “Comparing Hidden Markov Models with Artificial Neural Network Architectures for Condition Monitoring Applications,” Proceedings of the Fourth International Conference on Artificial Neural Networks, Cambridge, UK, 1995, pp.369-374.
13.Haykin, S., Neural Networks: A Comprehensive Foundation, Prentice Hall, Upper Saddle River, NJ, 1999.
14.Kulikov, G. G., Arkov, V. Y., and Breikin, T. V., “On Condition Monitoring of FADEC Information Channels (in Russian),” Izvestiya vuzov. Aviatsionnaya tehnika, N4, 1995.
15.Kulikov, G. G., Arkov, V. Y., and Breikin, T. V., “On Markov Model Applications in Aircraft Gas Turbine Engine Full Authority Digital Controller Test-beds,” Proceedings of the UKACC International Conference on Control ''96, Vol. 1, 1996, pp.120-124.
16.Létourneau, S., Famili, F., and Matwin, S., “Data Mining for Prediction of Aircraft Component Replacement,” IEEE Intelligent Systems, Vol. 14, No. 6, 1999, pp.59-66.
17.Lippmann, R. P., “An Introduction to Computing with Neural Nets,” IEEE ASSP Magazine, Vol. 4, No. 2, 1987, pp.4-22.
18.Merrington, G., Kwon, O. K., Goodwin, G., and Carlsson, B.,“Fault Detection and Diagnosis in Gas Turbines,” Journal of Engineering for Gas Turbines and Power, Vol. 113, No. 4, 1991, pp.276-282.
19.Naeem, M., Singh, R., and Probert, D., “Implications of Engine Deterioration for a High-Pressure Turbine-Blade’s Low-Cycle Fatigue (LCF) Life-Consumption,” International Journal of Fatigue, Vol. 21, No. 8, 1999, pp.831-847.
20.Prescott, W. E., “CT7-2D1 Training Guide,” SEI-763, GE Aircraft Engines Customer Technical Training, June 1990.
21.Romeyn, A., “Analysis of Aircraft Propulsion System Failure,” Proceedings of the Australian Society of Air Safety Investigators Conference, Queensland, Australia, 2004.
22.Rumelhart, D. E., Hinton, D. E., and Williams, R. J., “Learning Internal Representation by Error Propagation in Parallel Distributed Processing,” In Parallel Distributed Processing: Explorations in the Microstructure of Cognition, Vol. 1, Rumelhart, D. E. and McClelland, J. L. (Eds.), MIT Press, Cambridge, MA, 1986, pp.318-362.
23.Smola, J. A. and Schölkopf, B., “A Tutorial on Support Vector Regression,” Statistics and Computing, Vol. 14, No. 3, 2004, pp.199-222.
24.Smyth, P., “Hidden Markov Models for Fault Detection in Dynamic Systems,” Pattern Recognition, Vol. 27, No. 1, 1994, pp.149-164.
25.Vapnik, V., Golowich, S., and Smola, A., “Support Vector Method for Function Approximation, Regression Estimation and Signal Processing,” In Advances in Neural Information Processing Systems, Mozer, M., Jordan, M., and Petsche. T. (Eds.), MIT Press, Cambridge, MA, 1997, pp.281-287.