跳到主要內容

臺灣博碩士論文加值系統

(44.220.247.152) 您好!臺灣時間:2024/09/13 16:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:郭宏鈞
研究生(外文):Hung-chun Kuo
論文名稱:高速數位電路電磁耐受性之分析及設計
論文名稱(外文):Analysis and Design for the Electromagnetic Susceptibility of High-Speed Digital Circuits
指導教授:洪子聖洪子聖引用關係
指導教授(外文):Tzyy-Sheng Horng
學位類別:碩士
校院名稱:國立中山大學
系所名稱:電機工程學系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:127
中文關鍵詞:電源品質電磁耐受電磁能隙訊號品質時域有限差分法
外文關鍵詞:ImmunitySignal IntegrityElectromagnetic SusceptibilityPower IntegrityElectromagnetic BandgapFinite-Difference Time-Domain
相關次數:
  • 被引用被引用:1
  • 點閱點閱:414
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
由於無線通訊技術的發達,使得現今電磁環境日益複雜,加上電子電路朝向高速低電壓化及小型化發展,使得電路系統電磁耐受度(EMS)的重要性與日俱增。本論文將從兩個方向了解及解決電路系統對於電磁耐受的技術,一為電磁耐受量測環境建立及均勻場校準方法的研究,由建立的量測環境去驗證電路系統的硬體設計與其電磁耐受特性的相關性。第二部分為理論分析模型的建立及探討,藉由時域有限差分法(FDTD)及有限元素法(FEM)的理論模擬,驗證所建立的量測及模擬技術彼此的準確性。並對於電路佈局中的不同信號走線方式作探討,分析電源供應平面(PDN)電磁耐受的理論及機制,此外亦提出各種不同改善電磁耐受度之設計,並提出極為有效之週期性電磁能隙結構(EBG)來改善電源供應平面電磁耐受的問題。最後提出以屏蔽概念之設計觀念來抗電磁干擾以提升信號品質。
With the enormously developing of the wireless communication technology, the electromagnetic environment exposing to the electrical devices is becoming more and more complex. Besides, the trends of designing high-speed digital computer systems are toward fast edge rates, high clock frequencies, and low voltage levels. The electromagnetic susceptibility (EMS) or immunity of the high-speed circuit has become an important issue today apparently. In this thesis, we will firstly establish the measurement environment and calibration technology for numerical validation. Then we employ the three-dimension finite-differential time-domain (3D-FDTD) numerical method compared to the finite element method (FEM) to simulate the EMS behavior of the power delivery network (PDN) and traces of the printed circuit boards (PCB). In addition to several types of layout of the traces studied in this thesis, we also explain the mechanism and phenomenon of the EMS of the power/ground planes of the PCB. Besides the EMS behavior research of the traditional solutions to suppress the power noise, we propose an electromagnetic bandgap structure (EBG) which has the broadband suppression of the power noise and is validated to be effective to improve the EMS problems. Finally, we also propose a novel concept to increase the signal integrity (SI) by shielding design.
論文摘要 i
目錄 ii
圖表目錄 v
第一章 序論 1
1.1 研究背景及動機 1
1.2研究方法及大綱 2
1.3 章節摘要 2
第二章 FDTD演算法 4
2.1 Yee網格配置及離散化公式 4
2.2 穩定準則 8
2.3 吸收邊界 8
2.4 集總元件 10
2.4.1 電阻 12
2.4.2 電容 12
2.4.3 電感 13
2.5 全場散射場 13
第三章 電子電路的電磁耐受性研究之簡介與規範 24
3.1 電磁耐受之簡介 24
3.2 電磁耐受之測試規範 24
3.2.1 參考IEC61000-4-3建立之量測環境 24
3.2.2 均勻場強之校正 27
3.2.3 待測物測試設置 29
第四章 信號走線設計之電磁耐受(EMS)分析探討 32
4.1傳輸線電磁耐受理論分析 32
4.2 單根傳輸線 36
4.3單根傳輸線之不連續特性探討 39
4.3.1 彎角 40
4.3.2 過槽孔 43
4.4差動傳輸線 51
第五章 電源供應平面(PDN)電磁耐受之分析探討 57
5.1 接地彈跳現象及原因與電磁耐受之關係 57
5.2 模擬EMS之方法及現象探討 62
5.3 常見之接地彈跳雜訊防治對策對EMS之影響 67
5.3.1 去耦合電容 67
5.3.2 矩形狹縫連結通道之設計 72
5.4 電磁能隙結構於電源供應平面之應用與特性 78
5.5 電磁能隙結構於電源供應平面之EMS影響 81
第六章 以電磁屏蔽概念之信號耐受設計 92
6.1 簡介 92
6.2 以電磁屏蔽之信號設計探討 93
6.3 討論 109
第七章 結論 111
參考文獻 112
[1]J.G.Yook, V. Chandramouli,L.P.B. Katehi, K. A. Sakallah, T. R. Arabi, and T. A. Schreyer, “Computation of switching noise in printed circuit board”, IEEE Trans. Comp., Packag., and Manufact., vol. 20, pp. 64-75, Mar. 1997.
[2]林志忠, “以時遇有限差分法研究高速數位電路接地彈跳效應對信號完整性及電磁輻射干擾的影響”, 中山大學碩士論文, 1990.
[3]黃竣南, “多層高速數位電路板中接地彈跳雜訊對電源品質及其電磁輻射效應之模擬與量測”, 中山大學碩士論文, 2002.
[4]S. V. den Berghe, F. Olyslager, D. de Zutter, J. d. Moerloose, and W. Temmerman, “Study of the ground bounce caused by power plane resonances,” IEEE Trans. Electromag. Compat., vol. 40, pp. 111-119, May 1998.
[5]Allen Taflove and Susan C. Hagness, Computational Electrodynamics: The Finite-Differential Time-Domain Method, second edition.
[6]R. Abhari and G. V. Eleftheriades, “Metallo-dielectric electromagnetic bandgap structures for suppression and isolation of the parallel-plate noise in high-speed circuits,” IEEE Trans. Microw. Theory Tech., vol. 51, no. 6, pp. 1629–1639, Jun. 2003.
[7]T. Kamgaing and O. M. Ramahi, “A novel power plane with integrated simultaneous switching noise mitigation capability using high impedance surface,” IEEE Microw. Wireless Compon. Lett., vol. 13, no. 1, pp. 21–23, Jan. 2003.
[8]D. Sievenpiper, L. Zhang, R. F. J. Broas, N. G. Alexopolous, and E. Yablonovitch, “High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Trans. Microwave Theory & Tech., vol. 47, pp. 2059-2074, Nov. 1999.
[9]D. F. Sievenpiper, “High-impedance electromagnetic surfaces,” Ph.D. dissertation, Dept. Elect. Eng., Univ. California at Los Angeles, Los Angeles, CA, 1999.
[10]蔡佳麟, “計算具表面黏著劑數去耦合電容之電腦封裝電源供應系統特性的快速模型”, 中山大學碩士論文, 2001.
[11]C. L. Tsai and T. L. Wu, “An efficient FDTD approach of modeling power delivery planes with SMT decoupling capacitors,” in Proc. IEEE Int. Symp. Electromagnetic Compatibility, Boston, USA, Aug. 2003, pp. 581-584.
[12]T. H. Hubing, J. L. Drewniak, T. P. Van Doren, and D. M. Hockanson, “Power bus decoupling on multilayer printed circuit boards,” IEEE Trans. Electromag. Compat., vol. 37, pp. 155-166, May 1995.
[13]X. Minjia, T. H. Hubing, J. Chen, T. P. Van Doren, J. L. Drewniak, and R. E. DuBroff, “Power-bus decoupling with embedded capacitance in printed circuit board design,” IEEE Trans. Electromag. Compat., vol. 45, pp. 22-30, Feb. 2003.
[14]T. L. Wu, S. T. Chen, J. N. Hwang and Y. H. Lin, “Numerical and experimental investigation of radiation caused by the switching noise on the partitioned DC reference planes of high speed digital PCB.” IEEE Electromagn. Compat., vol. 46, no. 1, Feb. 2004.
[15]C. Wei, F. Jun, R. Yong, S. Hao, J.L. Drewniak, and R.E.DuBroff, “DC power bus noise isolation with power-plane segmentation,” IEEE Trans. Electromag. Compat., vol. 45, pp. 436-443, May 2003.
[16]IEC 61000-4-3 (2002-03): Electromagnetic compatibility (EMC) Part 4-3: Testing and measurement techniques- Radiated, radio-frequency, electromagnetic field immunity test.
[17]Clayton R. Paul, Introduction to Electromagnetic Compatibility. New York, John Wiley & Sons Inc., 1992.
[18]Frederick M. Tesche and Michel V. lanoz and Torbjorn Karlsson, EMC Analysis Methods and Computational Models.
[19]Clayton R. Paul, Analysis of Multiconductor Transmission Lines. New York, John Wiley & Sons Inc., 1994.
[20]M. Leone, “Radiated susceptibility on the printed-circuit-board level: simulation and measurement.” IEEE Electromagn. Compat., vol. 47, no.3 Aug. 2005.
[21]G. Spadacini, S. A. Pignari and F. Marliani, “Closed-form transmission line model for radiated susceptibility in metallic enclosures,” IEEE Electromagn. Compat., vol. 47, no.4 Nov. 2005.
[22]W. Yuan and E. P. Li, “A systematic coupled approach for electromagnetic susceptibility analysis of a shielded device with multilayer circuitry.” IEEE Electromagn. Compat., vol. 47, no.4 Nov. 2005.
[23]F. Moglie and A. P. Pastore, “FDTD analysis of plane wave superposition to simulate susceptibility tests inreverberation chambers.” IEEE Electromagn. Compat., vol. 48, no.1 Feb. 2006.
[24]S. H. Hall, G. W. Hall, and J. A. McCall, High-speed Digital System Design; A Handbook of Interconnect Theory and Design Practices. New York: John Wiley & Sons. Inc, 2000.
[25]林彥輝, “高速數位電路中地彈雜訊及其電磁輻射之模擬及解決方法之研究”, 中山大學博士論文, 2005.
[26]C. T. Wu, G. H. Shiue, S. M. Lin, and R. B. Wu, “Composite effects of reflections and ground bounce for signal line through a split power plane,” IEEE Trans. Adv. Packag., vol. 25, pp. 297-301, May 2002.
[27]G.-T. Lei, R. W. Techentin, and B. K. Gilbert, “High frequency characterization of power/ground-plane structures,” IEEE Trans. Microwave Theory Tech., vol. 47, pp. 562–569, May 1999.
[28]W. L. Stutzman and G. A. Thiele, Antenna Theory and Design. New York: John Wiley & Sons Inc., 1981.
[29]H. C. Kuo, S. T. Chen, C. C. Wang, S. W. Wen, H. C. Li, C. C. Chien, T. Z. Wu, “High Electromagnetic Immunity Power/Ground Planes Using L-bridged Electromagnetic Bandgap (EBG) Structure.” 2005 Asia Pacific Symposium on EMC, Page(s):117 – 120, Taipei, Taiwan, Dec. 2005.
[30]Y. H. Lin and T. L. Wu, “Investigation of signal quality and radiated emission of microstrip line on imperfect ground plane: FDTD analysis and measurement,” in Proc. IEEE Int. Symp. Electromagnetic Compatibility, Montreal, Canada, Aug. 2001, pp. 319-324.
[31]T. L. Wu, C. C. Wang, Y. H. Lin, T. K. Wang, and G. Chang, “A novel power plane with super-wideband elimination of ground bounce noise on high speed circuits.” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 3, Mar. 2005.
[32]王挺光, “可超寬頻抑制地彈雜訊之封裝級電源平面”, 中山大學碩士論文, 2005.
[33]T. L. Wu, Y. H. Lin, and S. T. Chen, “A novel power planes with low radiation and broadband suppression of ground bounce noise using photonic bandgap structures,” IEEE Microwave and Wireless Comp. Letters, vol. 14, pp. 337-339, July 2004.
[34]F. R. Yang, K. P. Ma, Y. Q., and T. Itoh, “A uniplanar compact photonic-bandgap (UC-PBG) structure and its applications for microwave circuit,” IEEE Trans. Microwave Theory Tech., vol. 47, pp. 1509-1514, Aug. 1999.
[35]R. Coccioli, F. R. Yang, K. P. Ma, and T. Itoh, “Aperture-coupled patch antenna on UC-PBG substrate,” IEEE Trans. Microwave Theory Tech., vol. 47, pp. 2123-2130, Nov. 1999.
[36]F. R. Yang, K. P. Ma, Y. Q., and T. Itoh, “A novel TEM waveguide using uniplanar compact photonic-bandgap (UC-PBG) structure,” IEEE Trans. Microwave Theory Tech., vol. 47, pp. 2092-2098, Nov. 1999.
[37]S. Shahparnia and O. M. Ramahi, “Electromagnetic interference (EMI) reduction from printed circuit boards (PCB) using electromagnetic bandgap structures,” IEEE Trans. Electromag. Compat., vol. 46, pp. 580-587, Nov. 2004.
[38]N. Shino and Z. Popovic´, “Radiation from ground-plane photonic bandgap microstrip waveguide,” IEEE MTT-S Int. Microwave Symp. Dig., June 2002, pp. 1079–1082.
[39]ECE R10.
[40]張信珉, ”新寬頻電磁能隙(EBG)結構以抑制地彈雜訊之研究”, 中山大學碩
士論文, 2004.
[41] L. Brillouin, Wave Propagation in Periodic Structure; Electric Filters and
Crystal Lattices. New York: McGraw-Hill, 1946.
[42] X. Ye, D. A. Hockanson, M. Li, Y. Ren, W. Cui, J. L. Drewniak, and R. E.
DuBroff, “EMI mitigation with multilayer power-bus stacks and via stitching of
reference planes,” IEEE Trans. Electromag. Compat., vol. 43, pp. 538-548, Nov.
2001.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top