|
[1]T. L. Wu, Y. H. Lin, J. N. Hwang, J. J. Lin, “The effect of test system impedance on measurements of ground bounce in printed circuit boards,” IEEE Trans. Electromagn. Compat., vol. 43, pp. 600-607 May 2001. [2]G.-T. Lei, R. W. Techentin, and B. K. Gilbert, “High frequency characterization of power/ground-plane structures,” IEEE Trans. Microwave Theory Tech., vol. 47, pp. 562–569, May 1999. [3]S. Radu and D. Hockanson, “An investigation of PCB radiated emissions from simultaneous switching noise,” in Proc. IEEE Int. Symp. Electromagn. Compat., pp. 893–898, 1999. [4]K. Ren, C. Y. Wu, and L. C. Zhang, “The restriction on delta-I noise along the power/ground layer in the high speed digital printed circuit board,” in Proc. IEEE Int. Symp. Electromagnetic Compatibility, Colorado, USA, Aug. 1998, pp. 511-516. [5]S. Van den Berghe, F. Olyslager, D. De Zutter, J. De Moerloose, and W. Temmerman, “Study of the ground bounce caused by power plane resonances,” IEEE Trans. Electromagn. Compat., vol. 40, May 1998, pp. 111-119. [6]T. L. Wu, S. T. Chen, J. N. Huang, and Y. H. Lin, “Numerical and experimental investigation of radiation caused by the switching noise on the partitioned DC reference planes of high speed digital PCB,” IEEE Trans. Electromagn. Compat., vol. 46, pp. 33-45, Feb. 2004. [7]T. Sudo, H. Sasaki, N. Masuda, and J. L. Drewniak, “Electromagnetic interference (EMI) of system-on-package (SOP),” IEEE Trans. Adv. Packag., vol. 27, pp. 304-314, May. 2004. [8]E. R. Pillai, “Coax via—A technique to reduce crosstalk and enhance impedance match at vias in high-frequency multilayer packages verified by FDTD and MoM modeling,” IEEE Trans. Microwave Theory Tech., vol. 45, pp. 1981–1985, Oct. 1997. [9]G. Cerri, R. De Leo, and V. M. Primian, “A rigorous model for radiated emission prediction in PCB circuits,” IEEE Trans. Electromag. Comp., vol. 35, pp. 102–109, Feb. 2001. [10]W. Pinello, A. C. Cangellaris, and A. Ruehli, “Hybrid electromagnetic modeling of noise interactions in packaged electronics based on the partial-element equivalent circuit formulation,” IEEE Trans. Microwave Theory Tech., vol. 45, pp. 1889–1896, Oct. 1997. [11]B. Archambeault and A. E. Ruehli, “Analysis of power/ground-plane EMI decoupling performance using the partial-element equivalent circuit technique,” IEEE Trans. Electromag. Compat., vol. 43, pp. 437–445, Nov. 2001. [12]W. D. Becker and R. Mittra, “FDTD modeling of noise in computer package,” IEEE Trans. Compon., Package., Manufact. Technol., B, vol. 17, pp. 240-247, Aug. 1994. [13]X. Ye, M. Y. Koledintseva, M. I, J. L. Drewniak, “ DC power-bus design using FDTD modeling with dispersive media and surface mount technology components,” IEEE Trans. Electromagn. Compat., vol. 43, no. 4, pp. 579–587, Nov. 2001. [14]N. Na, J. Choi, S. Chun, M. Swaminathan, and J. Srinivasan, “Modeling and transient simulation of planes in electronic packages,” IEEE Trans. Adv. Packag., vol. 23, pp. 340–352, Aug. 2000. [15]Z. L. Wang, O. Wada, Y. Toyota, and R. Koga, “Convergence acceleration and accuracy improvement in power bus impedance calculation with a fast algorithm using cavity modes,” IEEE Trans. Electromagn. Compat., vol. 47, no. 1, pp. 2–9, Feb. 2005. [16]H. H.Wu, J. W. Meyer, K. Lee, and A. Barber, “Accurate power supply and ground plane pair models,” IEEE Trans. Adv. Packag., vol. 22, pp. 259–266, Aug. 1999. [17]O. M. Ramahi, V. Subramanian, and B. Archambeault, “A Simple Finite-Difference Frequency-Domain (FDFD) Algorithm for Analysis of Switching Noise in Printed Circuit Boards and Packages,” IEEE Trans. Adv. Packag., vol. 26, no. 2, pp. 191–198, May 2003. [18]C. L. Tsai and T. L. Wu, “An efficient FDTD approach of modeling power delivery planes with SMT decoupling capacitors,” in Proc. IEEE Int. Symp. Electromagnetic Compatibility, Boston, USA, Aug. 2003, pp. 581-584. [19]T. H. Hubing, J. L. Drewniak, T. P. Van Doren, and D. M. Hockanson, “Power bus decoupling on multilayer printed circuit boards,” IEEE Trans. Electromag. Compat., vol. 37, pp. 155-166, May 1995. [20]X. Minjia, T. H. Hubing, J. Chen, T. P. Van Doren, J. L. Drewniak, and R. E. DuBroff, “Power-bus decoupling with embedded capacitance in printed circuit board design,” IEEE Trans. Electromag. Compat., vol. 45, pp. 22-30, Feb. 2003. [21]Kim, Hyungsoo, Sun, Byung Kook, and Kim, Joungho, "Suppression of GHz range power/ground inductive impedance and simultaneous switching noise using embedded film capacitors in multilayer packages and PCBs," IEEE Microwave and Wireless Comp. Letters, vol. 14, no. 2, pp. 71-73, Feb. 2004. [22]R. Abhari, and G. V. Eleftheriades, “Metallo-dielectric electromagnetic bandgap structures for suppression and isolation of the parallel-plate noise in high-speed circuits,” IEEE Trans. Microwave Theory Tech., vol. 51, pp. 1629-1639, June 2003. [23]T. Kamgaing, and O. M. Ramahi, “A novel power plane with integrated simultaneous switching noise mitigation capability using high impedance surface,” IEEE Microwave and Wireless Comp. Letters, vol. 13, pp. 21-23, Jan. 2003. [24]S. Shahparnia and O. M. Ramahi, “Electromagnetic interference (EMI) reduction from printed circuit boards (PCB) using electromagnetic bandgap structures, ” IEEE Trans. on Electromagn. Compat ., vol. 46, pp. 580-587, Nov. 2004. [25]D. Sievenpiper, L. Zhang, R. F. J. Broas, N. G. Alexopolous, and E. Yablonovitch, “High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Trans. Microwave Theory & Tech., vol. 47, pp. 2059-2074, Nov. 1999. [26]D. F. Sievenpiper, “High-impedance electromagnetic surfaces,” Ph.D. dissertation, Dept. Elect. Eng., Univ. California at Los Angeles, Los Angeles, CA, 1999. [27]T. L. Wu, Y. H. Lin, and S. T. Chen, “A novel power planes with low radiation and broadband suppression of ground bounce noise using photonic bandgap structures,” IEEE Microwave and Wireless Comp. Letters, vol. 14, pp. 337-339, July 2004. [28]T. L. Wu, Y. H. Lin, T. K. Wang, C. C. Wang, and S. T. Chen, “Electromagnetic bandgap power/ground planes for wideband suppression of ground bounce noise and radiated emission in high-speed circuits,” IEEE Trans. Microwave Theory Tech., vol. 53, pp. 2935-2942, Sept. 2005. [29]L. Brillouin, Wave Propagation in Periodic Structure; Electric Filters and Crystal Lattices. New York: McGraw-Hill, 1946. [30]Y. H. Lin and T. L. Wu, “Investigation of signal quality and radiated emission of microstrip line on imperfect ground plane: FDTD analysis and measurement,” in Proc. IEEE Int. Symp. Electromagnetic Compatibility, Montreal, Canada, Aug. 2001, pp. 319-324. [31]K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propagat., vol. 14, pp. 302-307, May 1966. [32]A. Taflove and S. C. Hagness, Computational Electromagnetic; the Finite-Difference Time-Doamin Method. Norwood, MA: Artech House, 2005. [33]W. Sui, D. A. Christensen, and C. H. Durney, “Extending the two-dimensional FDTD method to hybrid electromagnetic systems with active and passive lumped elements,” IEEE Trans. Microwave Theory Tech., vol. 40, pp. 724-730, April 1992. [34]M. Piket-May, A. Taflove, and J. Baron, “FD-TD modeling of digital signal propagation in 3-D circuits with passive and active loads,” IEEE Trans. Microwave Theory Tech., vol. 42, pp. 1514-1523, Aug. 1994. [35]M. Piket-May, A. Taflove, and J. Baron, “FD-TD modeling of digital signal propagation in 3-D circuits with passive and active loads,” IEEE Trans. Microwave Theory Tech., vol. 42, pp. 1514-1523, Aug. 1994. [36]W. Sui, D. A. Christensen, and C. H. Durney, “Extending the two-dimensional FDTD method to hybrid electromagnetic systems with active and passive lumped elements,” IEEE Trans. Microwave Theory Tech., vol. 40, pp. 724–730, Apr. 1992. [37]T. L. Wu, S. T. Chen, and Y. S. Huang, “A novel approach for the incorporation of arbitrary linear lumped network into FDTD method,” Microw. Wireless Compon. Lett., vol. 14, no. 2, pp. 74–76, Feb. 2004. [38]all, S. H., Hall, G. W., and McCall, J. A., High-Speed Digital System Design, John Wiley & Sons, pp. 102-104. [39]F. W. Grover, Inductance Calculations: Working Formulas and Tables. New York: Dover., 1962. [40]Fan, Jun, Cui, Wei, Drewniak, James L., Van Doren, Thomas P., and Knighten, James L., "Estimating the noise mitigation effect of local decoupling in printed circuit boards," IEEE Transactions on Advanced Packaging, vol. 25, no. 2, pp. 154-165, May 2002. [41]C. Wei, F. Jun, R. Yong, S. Hao, J.L. Drewniak, and R.E.DuBroff, “DC power bus noise isolation with power-plane segmentation,” IEEE Trans. Electromag. Compat., vol. 45, pp. 436-443, May 2003. [42]T. L. Wu, S. T. Chen, J. N. Hwang and Y. H. Lin, “Numerical and experimental investigation of radiation caused by the switching noise on the partitioned DC reference planes of high speed digital PCB.” IEEE Electromagn. Compat., vol. 46, no. 1, Feb. 2004. [43]C. T. Chan, Q. L. Yu, and K. M. Ho, "Order-Nspectral method for electromagnetic waves," Phys. Rev. B, vol. 51, pp. 16635-16642, 1995. [44]M. Qiu, and S. He, "A nonorthogonal finite-difference time-domain method for computing the band structure of a two-dimensional photonic crystal with dielectric and metallic inclusions," J. Appl. Phys., vol. 87, pp. 8268-8275, 2000. [45]John D. Joannopoulos, Robert D. Meade, and Joshua N. Winn, Photonic Crystals; Modeling the Flow of Light. Princeton University Press, 1995. [46]Steven G. Johnson and J. D. Joannopoulos, "Block-iterative frequency-domain methods for Maxwell''s equations in a planewave basis," Optics Express 8, no. 3, 173-190, 2001. [47]Meade, R. D., O. Alerhand, and J. D. Joannopoulos. 1993b. Handbook of Photonic Band Gap Materials. JAMteX I.T.R. [48]Meade, R. D., K. D. Brommer, and A. M. Rappe, and J. D. Joannopoulos. 1992. “Existence of a photonic band gap in two dimensions.” Appl. Phys. Lett. 61, 495. [49]Villeneuve, P., and M. Piche. 1992. “Photonic band gaps in two-dimensional square and hexagonal lattices.” Phys. Rev. B 46, 4969. [50]Winn, J. N., R. D. Meade, and J. D. Joannopoulos. 1994. “Two-dimensional photonic band gap materials.” J. Mod. Optics. 41, 257.
|