跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2024/12/14 08:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳信廷
研究生(外文):Sin-Ting Chen
論文名稱:高速電腦封裝系統之電源完整性及電磁相容設計
論文名稱(外文):Power Integrity and Electromagnetic Compatibility Design for High-speed Computer Package
指導教授:洪子聖洪子聖引用關係
指導教授(外文):Tzyy-Sheng Horng
學位類別:博士
校院名稱:國立中山大學
系所名稱:電機工程學系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:93
中文關鍵詞:電磁干擾高速數位電路同步切換雜訊時域有限差分法訊號品質電磁能隙
外文關鍵詞:High-Speed Digital CircuitElectromagnetic InterferenceSignal IntegrityElectromagnetic BandgapFinite-Difference Time-DomainSimultaneously Switching Noise
相關次數:
  • 被引用被引用:0
  • 點閱點閱:269
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
這篇論文將著重於分析及探討同步切換雜訊在封裝和印刷電路板間的耦合行為,並提出一些有效抑制同步切換雜訊之設計。在此提出了二維時域有限差分法結合封裝與印刷電路板間集總電路模型的數值演算方法。藉由此演算法我們可以有效率地分析同步切換雜訊在封裝與印刷電路板間的耦合機制。此外在本篇論文中針對封裝及印刷電路板提出了電磁能隙電源供應層的設計概念,有效地抑制同步切換雜訊。此結構在電源供應層所夾的基板中,週期性地埋入高介電常數的材料。由模擬與量測中可發現這種電磁能隙結構不僅對於同步切換雜訊有寬頻的抑制效果同時也可降低所衍生出來的電磁輻射問題。
This thesis focuses on the modeling and solutions of the simultaneous switching noise (SSN) problems in the power delivery networks (PDN) of high-speed digital circuit packages. An efficient numerical approach based on two-dimension (2D) finite-difference time-domain (FDTD) method combined with the lumped circuit model of the interconnection is proposed to model the PDN of a package and PCB. Based on this approach, the mechanism of noise coupling between package and PCB can be analyzed. In addition, a novel photonic crystal power layer (PCPL) design for the PDN of the package or PCB is proposed to suppress the SSN. The periodic High-Dk material is embedded into the substrate layer between the power and ground planes. Both modeling and measurement demonstrate the PCPL can form a wide stopband well with excellent suppression of the SSN propagation in the substrate and the corresponding electromagnetic interference (EMI).
Abstract i
Contents iii
List of Figures v
Acronyms ix

1. Introduction 1
1.1 Research Motivations 1
1.2 Simultaneous Switching Noise (SSN) in the Power distributed Network (PDN) of the IC Package 1
1.3 Literature Survey and Contributions 3
1.4 Chapter Outline 6
2. 2D-FDTD Method for Modeling the Combined PDN 7
2.1 Maxwell’s Equation and Yee Algorithm 7
2.2 Numerical Stability 11
2.3 Lumped Circuit Elements and Resistive Voltage Source 11
2.4 Power Delivery Networks Modeling by 2D-FDTD Method 12
2.5 Theory of 2D-FDTD modeling linked with lumped network of interconnections 15
3. Modeling of PDN of a Package and PCB 22
3.1 Configurations of the test fixture and measurement 25
3.2 Equivalent circuit model for the combined PDN 28
3.3 SSN Coupling Between Package and PCB 32
3.4 Effect of SMT Capacitors on the Power Noise for the Combined Structure 42
3.4.1 Influence of Capacitor Position 43
3.4.2 Influence of Capacitor Value 44
3.4.3 Influence of Capacitor Number 45
3.5 Summary 47
4. Photonic Crystal Power/Ground Layer (PCPL) 49
4.1 PCPL Model and Design by 2D-FDTD Method 50
4.1.1 Photonic Crystal Power Layer Concept 51
4.1.2 PCPL Design and Fabrication 52
4.1.3 Bandgap Modeling by 2-D FDTD Method 53
4.2 Power Integrity Performance 57
4.2.1 Frequency Domain 57
4.2.2 Time Domain 60
4.3 Signal Integrity Performance 62
4.4 Radiated Emission 65
4.5 Design Diagram 68
5. Conclusion 73
Bibliography 75
Biography 82
Publication List 83
[1]T. L. Wu, Y. H. Lin, J. N. Hwang, J. J. Lin, “The effect of test system impedance on measurements of ground bounce in printed circuit boards,” IEEE Trans. Electromagn. Compat., vol. 43, pp. 600-607 May 2001.
[2]G.-T. Lei, R. W. Techentin, and B. K. Gilbert, “High frequency characterization of power/ground-plane structures,” IEEE Trans. Microwave Theory Tech., vol. 47, pp. 562–569, May 1999.
[3]S. Radu and D. Hockanson, “An investigation of PCB radiated emissions from simultaneous switching noise,” in Proc. IEEE Int. Symp. Electromagn. Compat., pp. 893–898, 1999.
[4]K. Ren, C. Y. Wu, and L. C. Zhang, “The restriction on delta-I noise along the power/ground layer in the high speed digital printed circuit board,” in Proc. IEEE Int. Symp. Electromagnetic Compatibility, Colorado, USA, Aug. 1998, pp. 511-516.
[5]S. Van den Berghe, F. Olyslager, D. De Zutter, J. De Moerloose, and W. Temmerman, “Study of the ground bounce caused by power plane resonances,” IEEE Trans. Electromagn. Compat., vol. 40, May 1998, pp. 111-119.
[6]T. L. Wu, S. T. Chen, J. N. Huang, and Y. H. Lin, “Numerical and experimental investigation of radiation caused by the switching noise on the partitioned DC reference planes of high speed digital PCB,” IEEE Trans. Electromagn. Compat., vol. 46, pp. 33-45, Feb. 2004.
[7]T. Sudo, H. Sasaki, N. Masuda, and J. L. Drewniak, “Electromagnetic interference (EMI) of system-on-package (SOP),” IEEE Trans. Adv. Packag., vol. 27, pp. 304-314, May. 2004.
[8]E. R. Pillai, “Coax via—A technique to reduce crosstalk and enhance impedance match at vias in high-frequency multilayer packages verified by FDTD and MoM modeling,” IEEE Trans. Microwave Theory Tech., vol. 45, pp. 1981–1985, Oct. 1997.
[9]G. Cerri, R. De Leo, and V. M. Primian, “A rigorous model for radiated emission prediction in PCB circuits,” IEEE Trans. Electromag. Comp., vol. 35, pp. 102–109, Feb. 2001.
[10]W. Pinello, A. C. Cangellaris, and A. Ruehli, “Hybrid electromagnetic modeling of noise interactions in packaged electronics based on the partial-element equivalent circuit formulation,” IEEE Trans. Microwave Theory Tech., vol. 45, pp. 1889–1896, Oct. 1997.
[11]B. Archambeault and A. E. Ruehli, “Analysis of power/ground-plane EMI decoupling performance using the partial-element equivalent circuit technique,” IEEE Trans. Electromag. Compat., vol. 43, pp. 437–445, Nov. 2001.
[12]W. D. Becker and R. Mittra, “FDTD modeling of noise in computer package,” IEEE Trans. Compon., Package., Manufact. Technol., B, vol. 17, pp. 240-247, Aug. 1994.
[13]X. Ye, M. Y. Koledintseva, M. I, J. L. Drewniak, “ DC power-bus design using FDTD modeling with dispersive media and surface mount technology components,” IEEE Trans. Electromagn. Compat., vol. 43, no. 4, pp. 579–587, Nov. 2001.
[14]N. Na, J. Choi, S. Chun, M. Swaminathan, and J. Srinivasan, “Modeling and transient simulation of planes in electronic packages,” IEEE Trans. Adv. Packag., vol. 23, pp. 340–352, Aug. 2000.
[15]Z. L. Wang, O. Wada, Y. Toyota, and R. Koga, “Convergence acceleration and accuracy improvement in power bus impedance calculation with a fast algorithm using cavity modes,” IEEE Trans. Electromagn. Compat., vol. 47, no. 1, pp. 2–9, Feb. 2005.
[16]H. H.Wu, J. W. Meyer, K. Lee, and A. Barber, “Accurate power supply and ground plane pair models,” IEEE Trans. Adv. Packag., vol. 22, pp. 259–266, Aug. 1999.
[17]O. M. Ramahi, V. Subramanian, and B. Archambeault, “A Simple Finite-Difference Frequency-Domain (FDFD) Algorithm for Analysis of Switching Noise in Printed Circuit Boards and Packages,” IEEE Trans. Adv. Packag., vol. 26, no. 2, pp. 191–198, May 2003.
[18]C. L. Tsai and T. L. Wu, “An efficient FDTD approach of modeling power delivery planes with SMT decoupling capacitors,” in Proc. IEEE Int. Symp. Electromagnetic Compatibility, Boston, USA, Aug. 2003, pp. 581-584.
[19]T. H. Hubing, J. L. Drewniak, T. P. Van Doren, and D. M. Hockanson, “Power bus decoupling on multilayer printed circuit boards,” IEEE Trans. Electromag. Compat., vol. 37, pp. 155-166, May 1995.
[20]X. Minjia, T. H. Hubing, J. Chen, T. P. Van Doren, J. L. Drewniak, and R. E. DuBroff, “Power-bus decoupling with embedded capacitance in printed circuit board design,” IEEE Trans. Electromag. Compat., vol. 45, pp. 22-30, Feb. 2003.
[21]Kim, Hyungsoo, Sun, Byung Kook, and Kim, Joungho, "Suppression of GHz range power/ground inductive impedance and simultaneous switching noise using embedded film capacitors in multilayer packages and PCBs," IEEE Microwave and Wireless Comp. Letters, vol. 14, no. 2, pp. 71-73, Feb. 2004.
[22]R. Abhari, and G. V. Eleftheriades, “Metallo-dielectric electromagnetic bandgap structures for suppression and isolation of the parallel-plate noise in high-speed circuits,” IEEE Trans. Microwave Theory Tech., vol. 51, pp. 1629-1639, June 2003.
[23]T. Kamgaing, and O. M. Ramahi, “A novel power plane with integrated simultaneous switching noise mitigation capability using high impedance surface,” IEEE Microwave and Wireless Comp. Letters, vol. 13, pp. 21-23, Jan. 2003.
[24]S. Shahparnia and O. M. Ramahi, “Electromagnetic interference (EMI) reduction from printed circuit boards (PCB) using electromagnetic bandgap structures, ” IEEE Trans. on Electromagn. Compat ., vol. 46, pp. 580-587, Nov. 2004.
[25]D. Sievenpiper, L. Zhang, R. F. J. Broas, N. G. Alexopolous, and E. Yablonovitch, “High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Trans. Microwave Theory & Tech., vol. 47, pp. 2059-2074, Nov. 1999.
[26]D. F. Sievenpiper, “High-impedance electromagnetic surfaces,” Ph.D. dissertation, Dept. Elect. Eng., Univ. California at Los Angeles, Los Angeles, CA, 1999.
[27]T. L. Wu, Y. H. Lin, and S. T. Chen, “A novel power planes with low radiation and broadband suppression of ground bounce noise using photonic bandgap structures,” IEEE Microwave and Wireless Comp. Letters, vol. 14, pp. 337-339, July 2004.
[28]T. L. Wu, Y. H. Lin, T. K. Wang, C. C. Wang, and S. T. Chen, “Electromagnetic bandgap power/ground planes for wideband suppression of ground bounce noise and radiated emission in high-speed circuits,” IEEE Trans. Microwave Theory Tech., vol. 53, pp. 2935-2942, Sept. 2005.
[29]L. Brillouin, Wave Propagation in Periodic Structure; Electric Filters and Crystal Lattices. New York: McGraw-Hill, 1946.
[30]Y. H. Lin and T. L. Wu, “Investigation of signal quality and radiated emission of microstrip line on imperfect ground plane: FDTD analysis and measurement,” in Proc. IEEE Int. Symp. Electromagnetic Compatibility, Montreal, Canada, Aug. 2001, pp. 319-324.
[31]K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propagat., vol. 14, pp. 302-307, May 1966.
[32]A. Taflove and S. C. Hagness, Computational Electromagnetic; the Finite-Difference Time-Doamin Method. Norwood, MA: Artech House, 2005.
[33]W. Sui, D. A. Christensen, and C. H. Durney, “Extending the two-dimensional FDTD method to hybrid electromagnetic systems with active and passive lumped elements,” IEEE Trans. Microwave Theory Tech., vol. 40, pp. 724-730, April 1992.
[34]M. Piket-May, A. Taflove, and J. Baron, “FD-TD modeling of digital signal propagation in 3-D circuits with passive and active loads,” IEEE Trans. Microwave Theory Tech., vol. 42, pp. 1514-1523, Aug. 1994.
[35]M. Piket-May, A. Taflove, and J. Baron, “FD-TD modeling of digital signal propagation in 3-D circuits with passive and active loads,” IEEE Trans. Microwave Theory Tech., vol. 42, pp. 1514-1523, Aug. 1994.
[36]W. Sui, D. A. Christensen, and C. H. Durney, “Extending the two-dimensional FDTD method to hybrid electromagnetic systems with active and passive lumped elements,” IEEE Trans. Microwave Theory Tech., vol. 40, pp. 724–730, Apr. 1992.
[37]T. L. Wu, S. T. Chen, and Y. S. Huang, “A novel approach for the incorporation of arbitrary linear lumped network into FDTD method,” Microw. Wireless Compon. Lett., vol. 14, no. 2, pp. 74–76, Feb. 2004.
[38]all, S. H., Hall, G. W., and McCall, J. A., High-Speed Digital System Design, John Wiley & Sons, pp. 102-104.
[39]F. W. Grover, Inductance Calculations: Working Formulas and Tables. New York: Dover., 1962.
[40]Fan, Jun, Cui, Wei, Drewniak, James L., Van Doren, Thomas P., and Knighten, James L., "Estimating the noise mitigation effect of local decoupling in printed circuit boards," IEEE Transactions on Advanced Packaging, vol. 25, no. 2, pp. 154-165, May 2002.
[41]C. Wei, F. Jun, R. Yong, S. Hao, J.L. Drewniak, and R.E.DuBroff, “DC power bus noise isolation with power-plane segmentation,” IEEE Trans. Electromag. Compat., vol. 45, pp. 436-443, May 2003.
[42]T. L. Wu, S. T. Chen, J. N. Hwang and Y. H. Lin, “Numerical and experimental investigation of radiation caused by the switching noise on the partitioned DC reference planes of high speed digital PCB.” IEEE Electromagn. Compat., vol. 46, no. 1, Feb. 2004.
[43]C. T. Chan, Q. L. Yu, and K. M. Ho, "Order-Nspectral method for electromagnetic waves," Phys. Rev. B, vol. 51, pp. 16635-16642, 1995.
[44]M. Qiu, and S. He, "A nonorthogonal finite-difference time-domain method for computing the band structure of a two-dimensional photonic crystal with dielectric and metallic inclusions," J. Appl. Phys., vol. 87, pp. 8268-8275, 2000.
[45]John D. Joannopoulos, Robert D. Meade, and Joshua N. Winn, Photonic Crystals; Modeling the Flow of Light. Princeton University Press, 1995.
[46]Steven G. Johnson and J. D. Joannopoulos, "Block-iterative frequency-domain methods for Maxwell''s equations in a planewave basis," Optics Express 8, no. 3, 173-190, 2001.
[47]Meade, R. D., O. Alerhand, and J. D. Joannopoulos. 1993b. Handbook of Photonic Band Gap Materials. JAMteX I.T.R.
[48]Meade, R. D., K. D. Brommer, and A. M. Rappe, and J. D. Joannopoulos. 1992. “Existence of a photonic band gap in two dimensions.” Appl. Phys. Lett. 61, 495.
[49]Villeneuve, P., and M. Piche. 1992. “Photonic band gaps in two-dimensional square and hexagonal lattices.” Phys. Rev. B 46, 4969.
[50]Winn, J. N., R. D. Meade, and J. D. Joannopoulos. 1994. “Two-dimensional photonic band gap materials.” J. Mod. Optics. 41, 257.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊