跳到主要內容

臺灣博碩士論文加值系統

(44.220.251.236) 您好!臺灣時間:2024/10/11 05:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳漢揚
研究生(外文):Han-Yang Chen
論文名稱:雙環桑克干涉式水中聽音器之性能提昇
論文名稱(外文):The Promotion of the Performance Based on Dual Sagnac Interferometer Hydrophones
指導教授:陳茂雄陳茂雄引用關係
指導教授(外文):Mao-Hsiung Chen
學位類別:碩士
校院名稱:國立中山大學
系所名稱:電機工程學系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:161
中文關鍵詞:雙環桑克干涉儀水中聽音器解調
外文關鍵詞:dual Sagnac interferometerhydrophonedemodulation
相關次數:
  • 被引用被引用:1
  • 點閱點閱:261
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
光纖干涉儀,為一種對相位差有著高靈敏度的儀器,因此,以光纖干涉儀為基礎,來設計水中聽音器是相當適合的。桑克干涉儀有很低的海洋環境雜訊,比馬赫-詹德更適用在水下偵測。本論文提出雙環桑克干涉儀架構,推導和分析光路數學式子。
在感測頭方面,利用矽膠分別製作了心軸式、平板式的感測頭,並增加光纖的纏繞圈數來提昇靈敏度。本論文量測的結果為:在所有的心軸式感測頭之中,動態範圍最高的可達37.6±1.4 dB,其靈敏度為 -223.3±1.7 dB re V/1μPa,平板式感測頭的動態範圍為 42.1±1.5 dB,其靈敏度為 -213.8±1.3 dB re V/1μPa。
在光路架構方面,雙環桑克干涉儀和桑克干涉儀比較,其訊號強度大於20 dB左右,且動態範圍可達66 dB 以上,比桑克干涉儀大24 dB 左右,其靈敏度為-192.0 dB±1.8 re V/1μPa,並用模擬來設計最佳的二條延遲光纖長度,使偵測水中聲波的動態範圍提昇,驗證利用調整延遲光纖的相對長度,確實可以提昇最大和最小可測聲波訊號範圍。
An interferometer is used for phase detection. Thus, the hydrophone which is based on interferometric optic fiber sensor has extremely high sensitivity. Sagnac interferometric hydrophone has low noise of marine environment, which is more suitably used to detect underwater acoustic signal than that of a Mach-Zehnder interferometer. In this paper, a configuration of dual Sagnac interferometer was proposed. The mathematical model was derived and analyzed.
The fiber optic sensor head contains mandrel type and planar one. The acoustic window are made of silicon rubbers. It was should that we can increase their sensitivities by increase number of wrapping fiber coils.
In our experiment, the result shows that among all the mandrel sensor heads, the most highest dynamic range is up to 37.6±1.4 dB, and its sensitivity is -223.3±1.7 dB re V/1µPa ; while the dynamic range of the planar sensor head is 42.1±1.5 dB, and its sensitivity is -213.8±1.3 dB re V/1µPa。
As for the configuration of the optical interferometers, the intensity of the dual Sagnac interferometer is 20 dB larger than its Sagnac counterpart. Its dynamic range is above 66 dB, which is 24 dB larger than that of the Sagnac interferometer with the sensitivity of -192.0 dB re
V/1µPa. In addition, by using software simulation to design optimal lengths of delay fibers , we can increase interferometer’s the dynamic range of underwater acoustic detection. This paper verify that, by means of adjusting the length of these two delay fibers, we can actually increase the dynamic range of acoustic signal detection.
頁次
中文摘要 i
英文摘要 ii
誌謝 iii
目錄 iv
表目錄 vii
圖目錄 viii
符號表 xvii
第一章 簡介
1.1 研究背景與文獻回顧 1
1.2 研究動機 3
1.3 論文結構 5
第二章 光纖感測系統的理論
2.1 光纖感測機制 6
2.1.1 干涉儀原理 6
2.1.2 裸光纖的靈敏度 7
2.1.3 同調長度 8
2.1.4 桑克干涉儀 9
2.2 桑克干涉儀光路架構 9
2.2.1 干涉光路徑分析 9
2.2.2 干涉光路徑數學推導 10
2.2.3 主動零差解調 12
2.2.4 相位載波解調 13
2.2.5 PZT 相位調制器 16
2.2.6 雜訊 17
2.3 瓊斯矩陣 18
2.3.1 光纖的瓊斯矩陣 18
2.3.2 耦合器的瓊斯矩陣 19
2.3.3 摺疊光纖的瓊斯矩陣 20
第三章 光纖水中聽器和感測系統的分析
3.1 光纖水中聽音器 21
3.1.1 心軸式水中聽音器 21
3.1.2 鍍膜式水中聽音器 23
3.1.3 平板式水中聽音器 24
3.2 雙環桑克感測架構之分析 25
3.2.1 干涉光路徑分析 25
3.2.2 干涉光數學推導 26
3.2.3 訊號處理 28
3.3 雙環桑克干涉儀的性能提昇 32
3.3.1 延遲光纖與聲波振幅大小的關係 32
3.3.2 二條延遲光纖的設計 33
3.3.3 模擬物理場的訊號強度 35
3.3.4 光路偏振分析 37
3.3.5 極化控制器 39
第四章 實驗結果與討論
4.1 感測系統的元件特性量測 41
4.1.1 光耦合器 41
4.1.2 極化控制器 42
4.1.3 PZT 相位調制器 43
4.2 水密膠聲透實驗 45
4.2.1 水中聲源校正 45
4.2.2 PU 膠材質水中聲波量測 46
4.2.3 熱溶膠材質水中聲波量測 48
4.2.4 矽膠材質水中聲波量測 48
4.2.5 橡膠材質水中聲波量測 49
4.2.6 實驗結果與討論 50
4.3 水中聲波量測 50
4.3.1 感測頭的製作 51
4.3.1.1 心軸式感測頭的製作 51
4.3.1.2 平板式感測頭的製作 53
4.3.2 感測頭的光纖彎曲損失量測 55
4.3.3 桑克干涉儀架構之量測 56
4.3.4 實驗結果與討論 58
4.4 平板式感測頭方向性之量測 60
4.5 雙環桑克干涉儀架構之量測 60
4.5.1 雙環桑克干涉儀和桑克干涉儀之比較 61
4.5.2 延遲光纖長度之改變 63
4.5.3 實驗結果與討論 64
第五章 結論與未來展望
5.1 結論 65
5.1.1 心軸式與平板式光纖水中聽音器之比較 65
5.1.2 雙環桑克干涉儀和桑克干涉儀架構量測之比較 65
5.2 未來展望 66
5.2.1 系統性能之改善 66
5.2.2 未來期許 67
參考文獻 69
附表 75
附圖 81
附錄A 134
附錄B 135
附錄C 137
中英文對照表 138
作者簡介 141
1. L. Byoungho, “Review of the present status of optical fiber sensors,”Opt.Fiber Technol., Vol.19, No. 9, pp.57-79, 2003.
2. D. Kersey, M. A. Davis, H. J. Patrick, M, Leblance, K. P. Koo, C. G. Askins,M. A. Putnam, and E. J. Friebele, “ Fiber grating sensors,” J. Lightwave Technol., Vol.15, No. 8, pp.1442-1463, 1997.
3. D. Kersey, T. A. Berkoff , W. W. Moery, “ Fiber optic Bragg grating strain sensor with drift-compensated high-resolution interferometric wavelength-shift detection,” Opt. Lett., Vol.18, No.1, pp.72-74, 1993.
4. S. E. Kanellopoulos, V. A. Handerek , A. J. Rogres, “Simulataneous strain and temperature sensing with photogenerated in fiber grating,” Opt. Lett.,Vol.20, No.3, pp.333-335, 1995.
5. L. Su, K. S. Chiang, and C. Lu , “Fiber Bragg-grating incorporated microbend sensor for simultaneous mechanical parameter and temperature measurement,” IEEE Photon. Lightwave Technol Lett., Vol.17, No.12, pp.2697-2699, 2005.
6. P. R. Hoffman, and M. G. Kuzyk , “Position determination of an acoustic burst along a Sagnac interferometer,” J. Lightwave Technol., Vol. 22, No. 2,
pp.779-785, 2004.
7. 林永豐、林武文、陳茂雄,"水下光纖振動感測系統之設計," 2005 第七屆水下技術研應會暨國科會成果發表會,pp.180-185,國立高雄海洋科技大學,高雄市,民國九十四年四月十五日。
8. H. Lin, W. W. Lin, M. H. Cheng, S. C. Huang, “A vibation insesitive reciprocal reflection interferometer for optical fiber current sensor,” Opt.Eng., Vol.38, No.10, pp.1722-1799, 1999.
9. 林永豐、林武文,"干涉式光纖振動感測器用於地聲監測的可行性分析," 2004 年台灣光電科技研討會,國立中央大學,桃園縣,
PA-SA1-37,民國九十三年十月二十四日。
10. 林永豐、林武文,"以光纖干涉儀作落石監測之可行性之分析,"安全與管理研討會,國立高雄第一科技大學,高雄市,pp.247-252,民國九十三年十月二十四日。
11. W. W. Lin, S.C. Huang, M. H. Cheng “ A fiber optic microampere DC current sensor, “Opt. Eng., Vol.42, No.9, pp.2551-2557, 2003.
12. W. W. Lin, “ An all fiber optic current sensor, “Opt. Eng. Lett., Vol.42, No.4,pp.896-897, 2003.
13. Andrea Melloni, Marco Chinello, and Mario Martinelli, “All-optical switching in phase-shifted fiber Bragg grating, “IEEE Photon. Lightwave Technol. Lett., Vol.12, No.1, pp. 42-44, 2000.
14. J. Xu, G. Pickrell, X. Wang, W. Peng, K. Cooper, and A. Wang , “A novel temperature-insensitive optical fiber pressure sensor for harsh environment,” IEEE Photon. Lightwave Technol. Lett., Vol.17, No.4,pp.870-872, 2005.
15. D.Inaudi, and B. Glisic, “Interferometric inclinometer for structural monitoring,” Optical Fiber Sensor Conference., Grancia, Switzerland, Vol.1, pp.391-394, 2002.
16. P. Nash, “Review of interferometric optical fiber hydrophone technology,”Proc. Inst. Elect. Eng. Radar, Sonar, Navigation., Vol.143, pp.204-209,1996.
17. C. B. Paul, M. H. Andrew, and N. M. Tim, “Characterization of a polymer film optical fiber hydrophone for use in the range 1 to 20 MHz: A comparison with PVDF needle and membrane hydrophone,” IEEE Trans.
Ultrason., Vol. 47, No.1, pp.256-264, 2000.
18. C. Wurster, J. Staudenraus, and W. Eisenmenger, “The fiber optic hydrophone,” IEEE Ultrasonics Symposium., Vol. 2, pp.941-944, 1994.
19. C. K. Kirkendall, and A. Dandridge. , “Overview of high performance fiber-optic sensing,” J. Phys. D: Appl. Phys., Vol. 37, No. 18, pp.197-216,2004.
20. G. A. Cranch, P. J. Nash, and C. K. Kirkendall. , “Large-scale remotely interrogated arrays of fiber-optic interferometric sensors for underwater acoustic application,” IEEE Sensor J., Vol. 47, No. 1, pp.256-264, 2000.
21. S.C. Huang, W. W. Lin and M. H. Chen, “Time division multiplexing of polarization-insensitive fiber optic Michelson interferometric Sensors,“ Opt. Lett., Vol. 20, No,11, pp.1244-1246, 1995.
22. S.C. Huang, W. W. Lin, M. H. Chen, “Crosstalk analysis of time-division multiplexing of polarization-Insensitive fiber optic Michelson interferometeric sensors with 3x3 directional coupler, “ Appl. Optics,Vol.36, No.4, pp.921-933, 1997.
23. Kersey, A. D. Dandridge, A. “Multiplexing Mach-Zehnder ladder array with ten sensor elements, “ Electronics Letters., Vol.25, No.19, pp.1298-1299,1989.
24. S.C. Huang, W. W. Lin, M. H. Chen, “Phase sensitivity normalization in time-division multiplexing of polarization- insensitive interferometric sensor using phase-generated carrier demodulation,“ Opt. Eng., Vol.35,
No.9, pp.2634-2640, 1996.
25. W. W. Lin, S. C. Huang, J. S. Tasy, and S. C. Hung, “System design and optimization of optically amplified WDM-TDM hybrid polarization-insensitive fiber-optic Michelson interferomteric sensor,” J.Lighwave Technol ., Vol.18, No.3, pp.348-359, 2000.
26. Ki Ho Han, Wang Joo Lee, and Byoung Yoon Kim “Fiber-optic sensor ayyay based on Sagnac interferometric with stable phase bias,” Photon Lightwave Technol., Lett. Vol.13, No.2, pp.148-150, 2001.
27. J. A. Bucaro and T.R.Hickman, “Measurement of Sensitivity of Optic Fibers for Acoustic Detection,”Appl. Opt ., Vol. 18, pp.938-940, 1979.
28. A. M. Yurek, “Status of fiber optic acoustic sensing,” Optical Fiber Sensors Conference., Washington , DC. pp.338-341, 1992.
29. E. Kundtsal, “Free-flooded ring transducers: design methods and their interaction in vertical arrays,” Oceans 2003, Proceddings. Vol.4, No.2,pp.2074-2078 ,2003
30. N. Lagakos and J. A. Bucaro. , “Linearly configured embedded fiber-optic acoustic sensor,” J. Lighwave Technol ., Vol. 11, No. 4, pp.639-642, 1993.
31. N. Lagakos, T. R. Hickman, P. Ehrenfeuchter, J. A. Bucaro, and A.Dandridge, “Planar flexible fiber-optic acoustic sensors,” J. Lighwave Technol ., Vol. 11, No. 4, pp.1298-1303, 1990.
32. O. H. Waagaard, G. B. Haysagard, and G. Wang, “An investigation of the pressure-to-acceleration responsivity ratio of fiber-optic mandrel hydrophone,” J. Lighwave Technol ., Vol. 19, No. 7, pp.994-1003, 2001.
33. N. Takahashi, K. Yoshimura, S. Takahashi and K. Imamura, “Development of an optical fiber hydrophone with fiber Bragg grating,” Ultrasonics ., Vol.38 , pp.581-585, 2000.
34. B. O. Guan, H. Y. Tam, S. T. Lau, and L. W. Chan, “Ultrasonic hydrophone based on distributed Bragg reflector fiber laser,” IEEE Photon Lightwave Technol. Lett., Vol. 16, No. 1, pp.169-171, 2005.
35. C. Mu, S. Umchid, L. Bansal, P. A. Lewin, M. Ei-Sherif, and A.S.Daryoush, “Broadand fiber optic ultrasonic hydrophone probe,”Lightwave Tehnologies in Instrumentation and Measurement Conference.,
Philadelphia., PA., pp.149-152, 2004.
36. B. J. Vakoc, M. J. F. Digonnet, and G. S. Kino,“A novel fiber optic sensor array based on the Sagnac interferometer,” J. Lighwave Technol ., Vol. 17,
No. 11, pp.2316-2326, 1999.
37. A. Dandridge and A. D. Kersey,“Overview of Mazh-Zehnder sensor Technology and Application, “SPIE Vol.1985 , Fiber Optic and Laser Sensors VI, pp.34-52, 1998.
38. A. Dandridge, “Fiber optic sensors based on the Mach-Zehnder and Michelson interferometers,” in Fiber Optic Sensors, E. Udd, Ed., Wiley,New York, pp.271-280, 1991.
39. A. Dandridge, A. B. Tveten and T. G. Gillorenzi, “Homodyne demodulation scheme for fiber optic sensors using phase generated carrier,” IEEE Trans.
Microwave Theory Tech.,Vol. MTT-30 No. 10, pp.1635-1641, 1982.
40. K. Krakenes and K. Blotekjar, “Effect of laser phase noise in Sagnac interferometer,” J. Lighwave Technol ., Vol. 11, pp.654-653, 1993.
41. K. Krakenes and K. Blotekjar, “Sagnac interferometer for underwater Sound detection:noise properties,” Opt. Lett., Vol. 11, pp.654-653, 1993.
42. T. S. Jang, S. S. Lee, B. Kwon, W. J. Lee and J. J. Lee, ”Nocontact detection of ultransonic wave using fiber optic Sagnac interferometer,” IEEE Trans.Ultrason., Vol. 49, No. 6, pp.767-775,2002.
43. Kundsen, and K. Blotekajer, “An ultrasonic fiber-optic hydrophone incorporating a push-pull transducer in a Sagnac interferometer,” J.Lighwave Technol ., Vol. 12, No. 9, pp.1696-1700, 1994.
44. G. F. Mcdearmon, “Theoretical analysis of a push-pull fiber-optic hydrophone,” J. Lighwave Technol ., Vol.5, No.5, pp.647-652, 1987.
45. 周遊,光纖布拉格光柵水下聽音器之構型設計,pp.28, 國立中山大學電機研究所碩士論文,2003.
46. 周日峰,桑克干涉式水中聽音器之設計,pp.18, 國立中山大學電機研究所碩士論文,1999.
47. Eric Udd, Fiber Optical Sensors, pp.273-274, John Wiley and Sons, Inc.,New York, 1991.
48. T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, G. H. Sigel, Jr., J. H. Cole, S.C. Rashleigh, and R. G. Priest, “Optical fiber sensor technology,” IEEE J.Quantum Electron., Vol. QE-18, No. 4, pp. 626-665, 1982.
49. W. W. Lin, S. T. Shih, M. H. Chen, and S. C. Huang, “The transfer functions of PZT phase modulators in optical fiber sensors,” Proc. Natl. Sci. Counc.
ROC(A)., Vol. 18, No. 6, pp. 570-575, 1994.
50. A. Yu and A. S. Siddigui, “Systematic method for the analysis of optical fibre circuits,” IEE Proc.-Optoelectron., Vol. 142, pp. 165-175, 1995.
51. Eric Udd, Fiber Optical Sensors, pp.313-314, John Wiley and Sons, Inc.,New York, 1991.
52. N. Lagakos, E. U. Schnaus, J. H. Cole, J. Jarzynski and J. A. Bucaro,“Optimizing fiber coatings for interferometric acoustic sensors,” IEEE J.
Quant. Electron., Vol. Qe-18, No. 4, pp. 683-689, 1982.
53.J. A. Bucaro, N. Lagakos, B. H. Houston and A. Dandridge, “High frequency response of fiber optic planar acoustic sensors, “ J. Lightwave Technol ., Vol. 9, No. 9, pp.1195-1199, 1991.
54. A. B. Tveten, A. M. Yurek, Y. Y. Chao, A. Dandridge, “A High Freqeucny Fiber Optic Hydrophone, “ Optical Fiber Sensors Conference., Washington ,DC. pp.350-353, 1992.
55. J. I. Im and Y. R. Roh, “A finite element analysis of an interferometer optical fiber hydrophone,” J. Acoustic.Soc.Am., Vol.106, pp.2425-2431, 1998.
56. K. Krakenes and N. Blotekjaer, “Comparison of fiber-optic Sagnac and Mach-Zehnder Interferometers with respect to thermal process in the fiber,”J. Lighwave Technol ., Vol.13, No. 4, pp.682-686, 1999.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top