|
[1]S. C. Cripps, RF Power Amplifiers for Wireless Communications, Norwood, MA: Artech House, 1999. [2]S. C. Cripps, Advanced Techniques in RF Power Amplifier Design, Norwood, MA: Artech House, 2002. [3]P. B. Kenington, High Linearity RF Amplifier Design, Norwood, MA: Artech House, 2000. [4]N. O. Sokal and A. D. Sokal, "Class E-a new class of high-efficiency tuned single-ended switching power amplifiers," IEEE J. Solid-State Circuits, vol. 10, pp. 168-176, June 1975. [5]N. O. Sokal and F. H. Raab, "Harmonic output of class-E RF power amplifiers and load coupling network design," IEEE J. Solid-State Circuits, vol. 12, pp. 86-88, Jan. 1977. [6]N. O. Sokal, "Class E high-efficiency switching-mode tuned power amplifier with only one inductor and one capacitor in load network-approximate analysis," IEEE J. Solid-State Circuits, vol. 16, pp. 380-384, April 1981. [7]W. Young Yun, Y. Youngoo, and K. Bumman, "Analysis and experiments for high-efficiency class-F and inverse class-F power amplifiers," IEEE Trans. Microwave Theory Tech., vol. 54, pp. 1969-1974, May 2006. [8]M. Wren and T. J. Brazil, "Experimental class-F power amplifier design using computationally efficient and accurate large-signal pHEMT model," IEEE Trans. Microwave Theory Tech., vol. 53, pp. 1723-1731, May 2005. [9]F. H. Raab, "Maximum efficiency and output of class-F power amplifiers," IEEE Trans. Microwave Theory Tech., vol. 49, pp. 1162-1166, June 2001. [10]F. H. Raab, "Class-F power amplifiers with reduced conduction angles," IEEE Trans. Broadcasting, vol. 44, pp. 455-459, April 1998. [11]S. Gao, "High efficiency class-F RF/microwave power amplifiers," IEEE Microwave Magazine, vol. 7, pp. 40-48, Jan. 2006. [12]S. Mann, M. Beach, P. Warr, and J. McGeehan, "Increasing the talk-time of mobile radios with efficient linear transmitter architectures," IEEE J. Electronics and Communication Engineering vol. 13, pp. 65-76, April 2001. [13]J. Staudiger, "An overview of efficiency enhancements with application to linear handset power amplifiers," in Proc. IEEE RFIC Symp., 2002, pp. 45-48. [14]S. Forestier, P. Bouysse, R. Quere, A. Mallet, J. M. Nebus, and L. Lapierre, "Joint optimization of the power-added efficiency and the error-vector measurement of 20-GHz pHEMT amplifier through a new dynamic bias-control method," IEEE Trans. Microwave Theory Tech., vol. 52, pp. 1132-1141, April 2004. [15]D. Junxiong, P. S. Gudem, L. E. Larson, and P. M. Asbeck, "A high average-efficiency SiGe HBT power amplifier for WCDMA handset applications," IEEE Trans. Microwave Theory Tech., vol. 53, pp. 529-537, Feb. 2005. [16]D. Junxiong, P. S. Gudem, L. E. Larson, D. F. Kimball, and P. M. Asbeck, "A SiGe PA with dual dynamic bias control and memoryless digital predistortion for WCDMA handset applications," IEEE J. Solid-State Circuits, vol. 41, pp. 1210-1221, May 2006. [17]Y. Kyounghoon, G. I. Haddad, and J. R. East, "High-efficiency class-A power amplifiers with a dual-bias-control scheme," IEEE Trans. Microwave Theory Tech., vol. 47, pp. 1426-1432, Aug. 1999. [18]W. Narisi, V. Yousefzadeh, D. Maksimovic, S. Pajic, and Z. B. Popovic, "60% efficient 10-GHz power amplifier with dynamic drain bias control," IEEE Trans. Microwave Theory Tech., vol. 52, pp. 1077-1081, March 2004. [19]S. Reed, W. Yide, F. Huin, and S. Toutain, "HBT power amplifier with dynamic base biasing for 3G handset applications," IEEE Microwave Wirel. Compon. Lett., vol. 14, pp. 380-382, Aug. 2004. [20]S. L. Wong and S. Luo, "A 2.7-5.5 V, 0.2-1 W BiCMOS RF driver amplifier IC with closed-loop power control and biasing functions," IEEE J. Solid-State Circuits, vol. 33, pp. 2259-2264, Dec. 1998. [21]J. C. Clifton, L. Albasha, A. Lawrenson, and A. M. Eaton, "Novel multimode J-pHEMT front-end architecture with power-control scheme for maximum efficiency," IEEE Trans. Microwave Theory Tech., vol. 53, pp. 2251-2258, June 2005. [22]J. Staudinger, B. Gilsdorf, D. Newman, G. Norris, G. Sadowniczak, R. Sherman, T. Quach, and V. Wang, "800 MHz power amplifier using envelope following technique," in Proc. Radio and Wireless Conf., 1999, pp. 301-304. [23]B. Sahu and G. A. Ricon-Mora, "A high-efficiency linear RF power amplifier with power-tracking dynamically adaptive buck-boost supply," IEEE Trans. Microwave Theory Tech., vol. 52, pp. 112-120, Jan. 2004. [24]D. R. Anderson and W. H. Cantrell, "High-efficiency high-level modulator for use in dynamic envelope tracking CDMA RF power amplifiers," in IEEE MTT-S Int. Microwave Symp. Dig., 2001, pp. 1509-1512. [25]J. Staudinger, B. Gilsdorf, D. Newman, G. Norris, G. Sadowniczak, R. Sherman, and T. Quach, "High efficiency CDMA RF power amplifier using dynamic envelope tracking technique," in IEEE MTT-S Int. Microwave Symp. Dig., 2000, pp. 873-876. [26]F. Wang, A. H. Yang, D. F. Kimball, L. E. Larson, and P. M. Asbeck, "Design of wide-bandwidth envelope-tracking power amplifiers for OFDM applications," IEEE Trans. Microwave Theory Tech., vol. 53, pp. 1244-1255, April 2005. [27]Y. Youngoo, C. Jeonghyeon, S. Bumjae, and K. Bumman, "A microwave Doherty amplifier employing envelope tracking technique for high efficiency and linearity," IEEE Microwave Wirel. Compon. Lett., vol. 13, pp. 370-372, Sept. 2003. [28]V. Yousefzadeh, E. Alarcon, and D. Maksimovic, "Efficiency optimization in linear-assisted switching power converters for envelope tracking in RF power amplifiers," in Proc. ISCAS, 2005, pp. 1302-1305. [29]D. C. Cox, "Linear amplification with nonlinear components," IEEE Trans. Commun., vol. 23, pp. 1942-1945, Dec. 1974. [30]D. C. Cox and R. P. Leck, "Component signal separation and recombination for linear amplification with nonlinear components," IEEE Trans. Commun., vol. 23, pp. 1281-1287, Nov. 1975. [31]D. C. Cox and R. P. Leck, "A VHF implementation of a LINC amplifier," IEEE Trans. Commun., vol. 24, pp. 1018-1022, Sept. 1976. [32]S. A. Hetzel, A. Bateman, and J. P. McGeehan, "LINC transmitter," Electron. Lett., vol. 27, pp. 844-846, 1991. [33]F. J. Casadevall and A. Valdovinos, "Performance analysis of QAM modulations applied to the LINC transmitter," IEEE Trans. Veh. Technol., vol. 42, pp. 399-406, Nov. 1993. [34]L. Sundstrom, "The effect of quantization in a digital signal component separator for LINC transmitters," IEEE Trans. Veh. Tech., vol. 45, pp. 346-352, May 1996. [35]X. Zhang, L. E. Larson, and P. M. Asbeck, "Calibration scheme for LINC transmitter," Electron. Lett., vol. 37, pp. 317-318, March 2001. [36]C. P. Conradi and J. G. McRory, "Predistorted LINC transmitter," Electron. Lett., vol. 38, pp. 301-302, May 2002. [37]X. Zhang, L. E. Larson, and P. M. Asbeck, Design of Linear RF Outphasing Power Amplifiers, Norwood, MA: Artech House, 2003. [38]P. Garcia, J. de Mingo, A. Valdovinos, and A. Ortega, "An adaptive digital method of imbalances cancellation in LINC transmitters," IEEE Trans. Veh. Technol., vol. 54, pp. 879-888, May 2005. [39]F. H. Raab, "Efficiency of outphasing RF power amplifier systems," IEEE Trans. Commun., vol. 23, pp. 1094-1099, Oct. 1985. [40]L. Sundstrom and M. Johansson, "Effect of modulation scheme on LINC transmitter power efficiency," Electron. Lett., vol. 30, pp. 1643-1645, Sept. 1994. [41]R. Langridge, T. Thornton, P. M. Asbeck, and L. E. Larson, "A power re-use technique for improved efficiency of outphasing microwave power amplifiers," IEEE Trans. Microwave Theory Tech., vol. 47, pp. 1467-1470, Aug. 1999. [42]Z. Xuejun, L. E. Larson, P. M. Asbeck, and R. A. Langridge, "Analysis of power recycling techniques for RF and microwave outphasing power amplifiers," IEEE Trans. Circuits Syst., vol. 49, pp. 312-320, May 2002. [43]L. R. Kahn, "Single sideband transmission by envelope elimination and restoration," in Proc. IRE, 1952, pp. 803-806. [44]F. H. Raab, B. E. Sigmon, R. G. Myers, and R. M. Jackson, "L-band transmitter using Kahn EER technique," IEEE Trans. Microwave Theory Tech., vol. 46, pp. 2220-2225, Dec. 1998. [45]D. Rudolph, "Kahn EER technique with single-carrier digital modulations," IEEE Trans. Microwave Theory Tech., vol. 51, pp. 548-552, Feb. 2003. [46]A. Diet, C. Berland, M. Villegas, and G. Baudoin, "EER architecture specifications for OFDM transmitter using a class E amplifier," IEEE Microwave Wirel. Compon. Lett., vol. 14, pp. 389-391, Aug. 2004. [47]J. Young-Sang, Y. Hoe-Sung, and N. Sangwook, "A novel EER structure for reducing complexity using negative resistance amplifier," IEEE Microwave Wirel. Compon. Lett., vol. 14, pp. 195-197, May 2004. [48]F. Wang, D. Kimball, J. Popp, A. Yang, D. Y. C. Lie, P. Asbeck, and L. E. Larson, "Wideband envelope elimination and restoration power amplifier with high efficiency wideband envelope amplifier for WLAN 802.11g applications," in IEEE MTT-S Int. Microwave Symp. Dig., 2005, pp. 645-648. [49]C. Berland, I. Hibon, J. F. Bercher, M. Villegas, D. Belot, D. Pache, and V. Le Goascoz, "A transmitter architecture for nonconstant envelope modulation," IEEE Trans. Circuits Syst., vol. 53, pp. 13-17, Jan. 2006. [50]F. H. Raab, "Intermodulation distortion in Kahn-technique transmitters," IEEE Trans. Microwave Theory Tech., vol. 44, pp. 2273-2278, Dec. 1996. [51]W. Liu, J. Lau, and R. S. Cheng, "Considerations on applying OFDM in a highly efficient power amplifier," IEEE Trans. Circuits Syst., vol. 46, pp. 1329-1336, Nov. 1999. [52]J. K. Jau and T. S. Horng, "Linear interpolation scheme for compensation of path-delay difference in an envelope elimination and restoration transmitter," in Proc. Asia-Pacific Microwave Conf., 2001 [53]D. Rudolph, "Out-of-band emissions of digital transmissions using Kahn EER technique," IEEE Trans. Microwave Theory Tech., vol. 50, pp. 1979-1983, Aug. 2002. [54]E. McCune and W. Sander, "EDGE transmitter alternative using nonlinear polar modulation," in Proc. ISCAS, 2003, pp. 594-597. [55]A. W. Hietala, "A quad-band 8PSK/GMSK polar transceiver," IEEE J. Solid-State Circuits, vol. 41, pp. 1133-1141, May 2006. [56]T. Sowlati, D. Rozenblit, R. Pullela, M. Damgaard, E. McCarthy, K. Dongsoo, D. Ripley, F. Balteanu, and I. Gheorghe, "Quad-band GSM/GPRS/EDGE polar loop transmitter," IEEE J. Solid-State Circuits, vol. 39, pp. 2179-2189, Dec. 2004. [57]E. McCune, "High-efficiency, multi-mode, multi-band terminal power amplifiers," IEEE Microwave Magazine, vol. 6, pp. 44-55, June 2005. [58]P. Reynaert and M. S. J. Steyaert, "A 1.75-GHz polar modulated CMOS RF power amplifier for GSM-EDGE," IEEE J. Solid-State Circuits, vol. 40, pp. 2598-2608, Dec. 2005. [59]J. H. Chen, P. Fedorenko, and J. S. Kenney, "A Low Voltage W-CDMA Polar Transmitter With Digital Envelope Path Gain Compensation," IEEE Microwave Wirel. Compon. Lett., vol. 16, pp. 428-430, July 2006. [60]M. R. Elliott, T. Montalvo, B. P. Jeffries, F. Murden, J. Strange, A. Hill, S. Nandipaku, and J. Harrebel, "A polar modulator transmitter for GSM/EDGE," IEEE J. Solid-State Circuits, vol. 39, pp. 2190-2199, Dec. 2004. [61]E. McCune, "Multi-mode and multi-band polar transmitter for GSM, NADC, and EDGE," in Proc. IEEE WCNC, 2003, pp. 812-815. [62]J. K. Jau, F. Y. Han, M. C. Du, and T. S. Horng, "Polar modulation-based RF power amplifiers with enhanced envelope processing technique," in Proc. Eur. Microwave Conf., 2004, pp. 1317-1320. [63]K. C. Peng, J. K. Jau, and T. S. Horng, "A novel EER transmitter using two-point delta-sigma modulation scheme for WLAN and 3G applications," in IEEE MTT-S Int. Microwave Symp. Dig., 2002, pp. 1651-1654. [64]ETSI Tdoc SMG2 999/99, "EDGE: Concept Proposal for Enhanced GPRS," Ericsson, May 17 - 19, 1999. [65]J. K. Jau, Y. A. Chen, T. S. Horng, and J. Y. Li, "Envelope following-based RF transmitters using switching-mode power amplifiers," IEEE Microwave Wirel. Compon. Lett., vol.16, pp. 476-478, Aug. 2006. [66]J. K. Jau, Y. A. Chen, S. C. Hsiao, T. S. Horng, and J. Y. Li, "Highly efficient multimode RF transmitter using the hybrid quadrature polar modulation scheme," in IEEE MTT-S Int. Microwave Symp. Dig., 2006, pp. 789-792. [67]F. H. Raab and D. J. Rupp, "Class-S high efficiency amplitude modulator," RF Design, vol. 17, pp. 70-74, May 1994. [68]V. Saari, P. Juurakko, J. Ryyndnen, and K. Halonen, "13.5 MHz class-S modulator for an EER transmitter," in Proc. Norchip Conference, 2004, pp. 253-256. [69]D. K. Su and W. J. McFarland, "An IC for linearizing RF power amplifiers using envelope elimination and restoration," IEEE J. Solid-State Circuits, vol. 33, pp. 2252-2258, Dec. 1998. [70]S. Abedinpour, I. Deligoz, J. Desai, M. Figiel, and S. Kiaei, "Monolithic supply modulated RF power amplifier and DC-DC power converter IC," in IEEE MTT-S Int. Microwave Symp. Dig., 2003, pp. 603-606. [71]G. Hanington, P. F. Chen, V. Radisic, T. Itoh, and P. M. Asbeck, "Microwave power amplifier efficiency improvement with a 10 MHz HBT DC-DC converter," in IEEE MTT-S Int. Microwave Symp. Dig., 1998, pp. 589-592. [72]V. Yousefzadeh, E. Alarcon, and D. Maksimovic, "Three-level buck converter for envelope tracking applications," IEEE Trans. Power Electron., vol. 21, pp. 549-552, March 2006. [73]G. I. Bourdopoulos, A. Pnevmatikakis, V. Anastassopoulos, and T. L. Deliyannis, Delta-Sigma Modulators, London: Imperial College Press, 2003. [74]A. J. Frazier and M. K. Kazimierczuk, "DC-AC power inversion using sigma delta modulation," IEEE Trans. Circuits Syst., vol. 47, pp. 79-82, Jan. 2000. [75]Y. Fujimoto, P. L. Re, and M. Miyamoto, "A delta-sigma modulator for a 1-bit digital switching amplifier," IEEE J. Solid-State Circuits, vol. 40, pp. 1865-1871, Sept. 2005. [76]R. M. Gray, "Oversampling sigma-delta modulation," IEEE Trans. Commun., vol. 35, pp. 481-489, May 1987. [77]S. R. Norsworthy, R. Schreier, and G. C. Temes, Delta-Sigma Data Converters, New York, NY: IEEE Press, 1997. [78]R. W. Stewart and E. Pfann, "Oversampling and sigma-delta strategies for data conversion," J. Electronics and Communication Engineering, pp. 37-47, Feb. 1998. [79]G. Tapang and C. Saloma, "Dynamic-range enhancement of an optimized 1-bit A/D converter," IEEE Trans. Circuits Syst., vol. 49, pp. 42-47, Jan. 2002. [80]H. Wang, "A geometric view of sigma delta modulations," IEEE Trans. Circuits Syst., vol. 39, pp. 402-405, June 1992. [81]D. P. Kimber and P. Gardne, "Power series analysis of the Class E power amplifier," in Proc. Eur. Microwave Conf., 2004, pp. 1461-1464. [82]R. E. Zulinski and J. K. Steadman, "Class E power amplifiers and frequency multipliers with finite DC-feed inductance," IEEE Trans. Circuits Syst., vol. 34, pp. 1074-1087, Sept. 1987. [83]C. P. Avratoglou, N. C. Voulgaris, and F. I. Ioannidou, "Analysis and design of a generalized Class E tuned power amplifier," IEEE Trans. Circuits Syst., vol. 36, pp. 1086-1079, Aug. 1989. [84]M. Kazimierczuk and K. Puczko, "Exact analysis of class E tuned power amplifier at any Q and switch duty cycle," IEEE Trans. Circuits Syst., vol. 34, pp. 149-159, Feb. 1987. [85]B. E. Klehn and S. S. Islam, "An analysis of Class-E power amplifiers for RF communications," in Proc. ISCAS, 2004, pp. 13-26. [86]C. H. Li and Y. O. Yam, "Maximum frequency and optimum performance of Class E power amplifiers," IEE Proceedings-Circuits, Devices, and Systems, pp. 174-184, June 1994. [87]C. H. Li and Y. O. Yam, "Analysis and design of the Class E amplifier with nonzero ON resistance," Microwave and Optical Technology Letter, pp. 337-341, May 1994. [88]P. M. Guado, C. Bernal, and A. Mediano, "Exact analysis of a simple class E circuit version for device characterization purposes," in IEEE MTT-S Int. Microwave Symp. Dig., 2003, pp. 1717-1740. [89]J. K. Jau, Y. A. Chen, T. S. Horng, and T. L. Wu, "Optimum analytical design solution to intergrated Class-E amplifiers," in Proc. IASTED Wireless Networks and Emerging Tech. Conf., 2005, pp. 40-44. [90]R. Andraka, "A survey of CORDIC algorithms for FPGA based computers," in Proc. Field Programmable Gate Arrays Conf., 1998, pp. 191-200. [91]J. Duprat and J. M. Muller, "The CORDIC algorithm: New results for fast VLSI implementation," IEEE Trans. Computers, vol. 42, pp. 168-17,1993. [92]G. L. Haviland and A. A. Tuszynski, "A CORDIC arithmetic processor chip," IEEE J. Solid-State Circuits, vol. 15, pp. 4-15, Jan. 1980. [93]A. M. Despain, "Fourier transform computations using CORDIC iterations," IEEE Trans. Computers, vol. 23, pp. 993-1001, 1974. [94]W. J. Duh and J. L. Wu, "Implementing the discrete cosine transform by using CORDIC techniques," in Proc. Int. VLSI Technology, Systems and Applications Symp., 1989, pp. 281-285. [95]J. Volder, "The CORDIC trigonometric computing technique," IRE Trans. Electronic Computing, pp. 330-334, Sept. 1959. [96]D. Lee and M. Morf, "Generalized CORDIC for digital signal processing," in Proc. IEEE Acoustics, Speech, and Signal Processing Conf., 1982, pp. 1748-1751. [97]D. Timmermann, H. Hahn, B. J. Hosticka, and G. Schmidt, "A programmable CORDIC chip for digital signal processing applications," IEEE J. Solid-State Circuits, vol. 26, pp. 1317-1321, Sept. 1991. [98]J. Volder, "Binary computation algorithms for coordinate rotation and function generation," Convair Report IAR-1 148 Aeroelectrics Group, June 1956. [99]Y. H. Hu and S. Naganathan, "An angle recoding method for CORDIC algorithm implementation," IEEE Trans. Computers, vol. 42, pp. 99-102, Jan. 1993. [100]3GPP2 C.S0024, "cdma2000 High Rate Packet Data Air Interface Specification," Version 2.1, Aug. 2001. [101]E. P. Cunningham, Digital Filtering, Boston, MA: Houghton Mifflin Company, 1992. [102]R. Schreier, "The delta-sigma toolbox," Analog Device Inc., Version 6, Jan. 2003.
|