( 您好!臺灣時間:2021/04/11 16:05
字體大小: 字級放大   字級縮小   預設字形  


研究生(外文):Chien Lee
論文名稱(外文):Study on Micro-Contact Mechanics Model for Multiscale Rough Surfaces
外文關鍵詞:fractalrough surfacesmicro-contact mechanicsmultiscaleasperity
  • 被引用被引用:0
  • 點閱點閱:209
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:40
  • 收藏至我的研究室書目清單書目收藏:0
然而在1966年所提出的傳統GW model的解析方式只考慮到單一峰端尺度,其峰端尺度不會隨著兩接觸表面的負荷或間距而改變,是固定在單一尺度上的。在這樣的條件下,某尺度的峰端所解析出來的結果只能適用於某負荷範圍內。
本研究發展出峰端尺度可隨負荷而改變的新模型,稱之為“多重峰端尺度GW model”。首先,以Nayak峰端統計模型為基礎解析出在不同尺度及表面參數下的多重尺度峰端特性,接下來是以材料降伏理論發展出一套可求得支撐負荷的最佳峰端尺度的準則。最後藉由此準則與多重尺度峰端特性建立成多重峰端尺度GW model。
The observed multiscale phenomenon of rough surfaces, i.e. the smaller mountains mount on the bigger ones successively, renders the hierarchical structures which are described by the fractal geometry. In this situation, when two rough surfaces are loaded together with a higher load, the smaller asperities will undergo plastic flow and immerge into the bigger asperities below them. In other words, the higher load needs to be supported by the bigger asperities.
However, when the GW model was proposed in 1966, its analytical method considered that the length-scale of asperities is fixed, which is independent of load (or surface separation). In such condition, the analytical results for a specific asperity length-scale can only suit the situation of a certain narrow range of load.
In this research, a new model, called the multiscale GW model, has been developed, which takes into account the relationship between the load and the asperity length-scale. At first, based on the Nayak’s model the multiscale asperity properties with different surface parameters have been derived, and based on the material yielding theory a criterion for determining the optimal asperity length-scale, which functions as supporting the load, is developed. Then both of the above are integrated into the GW model to build the multiscale GW model.
The new model is compared with traditional one qualitatively and quantitatively and show their essential differences. The effects of surface parameters and material parameters are discussed in this model. Finally a comparison with the experiment is made, and reveal the good coincidence.
第一章 緒論-----------------------------------------------1
1.1 微接觸力學的應用-------------------------------------1
1.2 文獻回顧 --------------------------------------------2
1.2.1 GW model的演進-------------------------------------------------2
1.2.2 峰端特性統計模型的演進---------------------------------------3
1.3 傳統單一峰端尺度模型的缺陷-----------------------------------------4
1.4 研究目的及論文架構-----------------------------------------------------7
第二章 隨機表面的特徵化及多重尺度峰端特性--------------------------8
2.1 隨機表面的特徵化--------------------------------------------------------8
2.1.1 表面參數的使用---------------------------------------------------8
2.1.2 垂直方向的統計特徵--標準差及平均高度------------------9
2.1.3 水平方向的統計特徵--自我相關長度------------------------9
2.1.4 小尺度空間下的自我相仿特性--碎形維度-----------------11
2.1.5 表面參數對表面形貌的影響-----------------------------------14
2.2 多重尺度峰端特性的取得----------------------------------------------19
2.2.1 Nayak峰端特性統計模型的使用-----------------------------19
2.2.2 表面參數及高頻濾波頻率 對峰端特性的影響---------22
2.3 模擬表面的峰端特性及與解析結果比較----------------------------27
第三章 多重峰端尺度GW-model-------------------------------------------29
3.1 單一峰端尺度模型的推導----------------------------------------------29
3.3 與傳統單一峰端尺度GW Model的比較----------------------------37
第四章 解析結果及與實驗比較---------------------------------------------40
4.1 真接觸面積與負荷的關係----------------------------------------------40
4.2 介面剛性與負荷的關係-------------------------------------------------41
4.3 峰端高度分佈與負荷的關係-------------------------------------------42
4.4 峰端尺度與負荷的關係-------------------------------------------------44
4.5 與實驗結果比較----------------------------------------------------------45
第五章 結論與未來研究方向------------------------------------------------50
[1] K.N.G Fuller and D. Tabor, “The effect of surface roughness on
adhesion of elastic solids”, Proc. R. Soc. London, Ser. A,
345, (1975) 327-342.
[2] D. Tabor, “Friction–The present state of our understanding”,
J. Lubrication Technol.,103, (1981) 169-179.
[3] M. Cooper, B. Mikic, and M. M. Yovanovich, “Thermal Contact
Conductance”, J. Heat Mass Transfer, 12, (1969) 279-300.
[4] Yeau-Ren Jeng, Jen-Tin Chen and Ching-Yang Cheng, “Theoretical
and experimental study of a thermal contact conductance model for
elastic, elastoplastic and plastic deformation of rough surfaces”,
Tribology Letters, 14, (2003) 251-259.
[5] R. Holm, “Electric Contacts:Theory and Application”, Berlin,
Germany, Springer-Verlag, 1967.
[6] L. Kogut and K. Komvopoulos, “Electrical contact resistance theory
for conductive rough surfaces”, Journal of Applied Physics,
94, (2003) 3153-3162.
[7] L Jay Guo, “Recent progress in nanoimprint technology and its
applications”, J. Phys. D:Appl. Phys., 37, (2004) R123-R141.
[8] Byron D. Gates, Qiaobing Xu, J. Christopher Love, Daniel B. Wolfe
and George M. Whitesides, “Unconventional Nanofabrication”,
Annu. Rev. Mater. Res., 34, (2004) 339-372.
[9] J. A. Greenwood and J. B. P. Williamson, “Contact of Nominally Flat
Surfaces”, Proc. R. Soc. London, Ser. A, 295, (1966) 300-319.
[10] M. O''Callaghan and M. A. Cameron, “Static contact under load
between nominally flat surfaces in which deformation is purely
elastic”, Wear, 36, (1976) 79-97.
[11] H. A. Francis, “Application of spherical indentation mechanics to
reversible and irreversible contact between rough surfaces”,
Wear, 45, (1977) 221-269.
[12] R. A. Onions and J. F. Archard, “The contact of surfaces having a
random structure”, J. Phys. D:Appl. Phys., 6, (1973) 289-304.
[13] A. W. Bush, R. D. Gibson and T. R. Thomas, “The elastic contact of
a rough surface”, Wear, 35, (1975) 87-111.
[14] John I. McCool, “Comparison of models for the contact of rough
surfaces”, Wear, 107, (1986) 37-60.
[15] D. J. Whitehouse and J. F. Archard, “The Properties of Random
Surfaces of Significance in their Contact”, Proc. R. Soc. London,
Ser. A, 316, (1970) 97-121.
[16] P. R. Nayak, “Random process model of rough surfaces”,
J. Lubrication Technol., 93, (1971) 398-407.
[17] John I. McCool, “Non-Gaussian effects in microcontact”,
Int. J. Mach. Tools Manufact., 32, (1992) 115-123.
[18] Ning Yu and Andreas A. Polycarpou, “Contact of Rough Surfaces
With Asymmetric Distribution of Asperity Heights”,
ASME J. Tribol., 124, (2002) 367-376.
[19] W. R. Chang, I. Etsion and D. B. Bogy, “An Elastic-Plastic Model
for the Contact of Rough Surfaces”, ASME J. Tribol.,
109, (1987) 257-263.
[20] D. G. Evseev, B. M. Medvedev and G. G. Grigoriyan, “Modification
of the Elastic-Plastic Model for the Contact of Rough Surfaces”,
Wear, 150, (1991) 79-88.
[21] S. Kucharski, T. Klimczak, A. Polijaniuk and J. Kaczmarek,
“Finite-Elements Model for the Contact of Rough Surfaces”,
Wear, 177, (1994) 1-13.
[22] J. H. Horng, “An Elliptic Elastic-Plastic Asperity Microcontact
Model for Rough Surfaces”, ASME J. Tribol., 120, (1998) 82-89.
[23] Yongwu Zhao, David M. Maietta and L. Chang, “An Asperity
Microcontact Model Incorporating the Transition From Elastic
Deformation to Fully Plastic Flow”, ASME J. Tribol.,
122, (2000) 86-93.
[24] L. Kogut and I. Etsion, “Elastic-Plastic Contact Analysis of a Sphere
and a Rigid Flat”, ASME Jour. Appl. Mech., 69, (2002) 657-662.
[25] L. Kogut and I. Etsion, “A Finite Element Based Elastic-Plastic
Model for the Contact of Rough Surfaces”,
Tribol. Trans., 46, (2003) 383-390.
[26] Yeau-Ren Jeng and Pei-Ying Wang, “An Elliptical Microcontact
Model Considering Elastic, Elastoplastic, and Plastic Deformation”,
ASME J. Tribol., 125, (2003) 232-240.
[27] D. J. Whitehouse and J. F. Archard, “The Properties of Random
Surfaces of Significance in their Contact”, Proc. R. Soc. London,
Ser. A, 316, (1970) 97-121.
[28] D. J. Whitehouse and M. J. Phillips, “Discrete Properties of Random
Surfaces”, Proc. R. Soc. London, Ser. A, 290, (1978) 267-298.
[29] D. J. Whitehouse and M. J. Phillips, “Two-Dimensional Discrete
Properties of Random Surfaces”, Proc. R. Soc. London, Ser. A,
305, (1982) 441-468.
[30] J. A. Greenwood, “A Unified Theory of Surface Roughness”,
Proc. R. Soc. London, Ser. A, 393, (1984) 133-157.
[31] M. S. Longuet-Higgins, “The Statistical Analysis of a Random,
Moving Surface”, Proc. R. Soc. London, Ser. A,
249, (1957) 321-387.
[32] M. S. Longuet-Higgins, “Statistical Properties of an Isotropic
Random Surface”, Proc. R. Soc. London, Ser. A,
250, (1957) 157-174.
[33] D. J. Whitehouse, “Surfaces:an essential link in nanotechnology”,
Nanotechnology, 9, (1998) 113-117.
[34] Athanasios Papoulis, “Probability, Random Variables and Stochastic
Processes”, McGraw-Hill, 2001.

[35] R. S. Sayles and T. R. Thomas, “Surface topography as a
nonstationary random process”, Nature, 271, (1978) 431-434.
[36] B. B. Mandelbrot, “The Fractal Geometry of Nature”,
Freeman, New York, 1982.
[37] Paul Embrechts and Makoto Maejima, “Selfsimilar Processes”,
Princeton University Press, New Jersey, 2002.
[38] P. Hall and S. Davies, “On direction-invariance of fractal dimension
on a surface”, Appl. Phys. A, 60, (1995) 271-274.
[39] T. R. Thomas, B.-G. Rosen and N. Amini, “Fractal characterization
of the anisotropy of rough surfaces”, Wear, 232, (1999) 41-50.
[40] R. S. Sayles and T. R. Thomas, “The spatial representation of surface
roughness by means of the structure function: a practical alternative
to correlation”, Wear, 42, (1977) 263-276.
[41] Albert-Laszls Barabási and Harry Eugene Stanley, “Fractal Concepts
in Surface Growth”, Cambridge University Press, 1995.
[42] M. V. Berry and T. M. Blackwell, “Diffractal echoes”,
J. Phys. A: Math. Gen., 14, (1981) 3101-3110.
[43] B. N. J. Persson, “Elastoplastic Contact between Randomly Rough
Surfaces”, Phys. Rev. Lett., 87, (2001) 116101.
[44] A. W. Bush, R. D. Gibson and G. P. Keogh, “The Limits of Elastic
Deformation in the Contact of Rough Surfaces”,
Mech. Res. Commun., 3, (1976) 169-174.
[45] Ning Yu and Andreas A. Polycarpou, “Extracting Summit Roughness
Parameters from Random Gaussian Surfaces Accounting for
Asymmetry of the Summit Heights”, ASME J. Tribol.,
126, (2004) 761-766.
[46] J. F. Archard, “Single contacts and multiple encounters”,
J. Appl. Phys., 32, (1961) 1420-1425.
[47] T. R. Thomas and B. G. Rosen, “Determination of the optimum
sampling interval for rough contact mechanics”,
Tribology International, 33, (2000) 601-610.
[48] Renato Buzio, Corrado Boragno, Fabio Biscarini, Francesco Buatier
De Mongeot and Ugo Valbusa, “The contact mechanics of fractal
Surfaces”, Nature Materials, 2, (2003) 233-236.
第一頁 上一頁 下一頁 最後一頁 top
1. 劉潔心、晏涵文、劉貴雲、邱詩揚、李佳容(2000)。社區居民綠色消費 行為及相關之訊息傳播調查之研究。衛生教育學報,13,189-212。
2. 劉潔心、晏涵文、劉貴雲、邱詩揚、李佳容(2000)。社區居民綠色消費 行為及相關之訊息傳播調查之研究。衛生教育學報,13,189-212。
3. 傅祖壇、莊謹琦與陳政位(2005)。消費者對餵食基改大豆之鮭魚偏好與 風險願付價值。調查研究-方法與應用,15,61-86。
4. 傅祖壇、莊謹琦與陳政位(2005)。消費者對餵食基改大豆之鮭魚偏好與 風險願付價值。調查研究-方法與應用,15,61-86。
5. 柴松林(2001)。綠色消費主義。環保標章簡訊,25,4-5。
6. 柴松林(2001)。綠色消費主義。環保標章簡訊,25,4-5。
7. 林新沛、鄭時宜(2001)。環境行為調查中追問對作答的影響。調查研究, 10,105-120。
8. 林新沛、鄭時宜(2001)。環境行為調查中追問對作答的影響。調查研究, 10,105-120。
9. 林新沛、蔡英媛(1997)。環境觀念與環境行為。應用心理學報,6,1-22。
10. 林新沛、蔡英媛(1997)。環境觀念與環境行為。應用心理學報,6,1-22。
11. 林新沛(2005)。標準化迴歸係數的正確解釋。中山管理評論,13(2), 535-550。
12. 林新沛(2005)。標準化迴歸係數的正確解釋。中山管理評論,13(2), 535-550。
13. 王天佑、黃芳銘(1999)。中大學生環境認知、態度與行為調查研究。中 大社會文化學報,8,189-216。
14. 王天佑、黃芳銘(1999)。中大學生環境認知、態度與行為調查研究。中 大社會文化學報,8,189-216。
系統版面圖檔 系統版面圖檔