|
[1] K.N.G Fuller and D. Tabor, “The effect of surface roughness on adhesion of elastic solids”, Proc. R. Soc. London, Ser. A, 345, (1975) 327-342. [2] D. Tabor, “Friction–The present state of our understanding”, J. Lubrication Technol.,103, (1981) 169-179. [3] M. Cooper, B. Mikic, and M. M. Yovanovich, “Thermal Contact Conductance”, J. Heat Mass Transfer, 12, (1969) 279-300. [4] Yeau-Ren Jeng, Jen-Tin Chen and Ching-Yang Cheng, “Theoretical and experimental study of a thermal contact conductance model for elastic, elastoplastic and plastic deformation of rough surfaces”, Tribology Letters, 14, (2003) 251-259. [5] R. Holm, “Electric Contacts:Theory and Application”, Berlin, Germany, Springer-Verlag, 1967. [6] L. Kogut and K. Komvopoulos, “Electrical contact resistance theory for conductive rough surfaces”, Journal of Applied Physics, 94, (2003) 3153-3162. [7] L Jay Guo, “Recent progress in nanoimprint technology and its applications”, J. Phys. D:Appl. Phys., 37, (2004) R123-R141. [8] Byron D. Gates, Qiaobing Xu, J. Christopher Love, Daniel B. Wolfe and George M. Whitesides, “Unconventional Nanofabrication”, Annu. Rev. Mater. Res., 34, (2004) 339-372. [9] J. A. Greenwood and J. B. P. Williamson, “Contact of Nominally Flat Surfaces”, Proc. R. Soc. London, Ser. A, 295, (1966) 300-319. [10] M. O''Callaghan and M. A. Cameron, “Static contact under load between nominally flat surfaces in which deformation is purely elastic”, Wear, 36, (1976) 79-97. [11] H. A. Francis, “Application of spherical indentation mechanics to reversible and irreversible contact between rough surfaces”, Wear, 45, (1977) 221-269. [12] R. A. Onions and J. F. Archard, “The contact of surfaces having a random structure”, J. Phys. D:Appl. Phys., 6, (1973) 289-304. [13] A. W. Bush, R. D. Gibson and T. R. Thomas, “The elastic contact of a rough surface”, Wear, 35, (1975) 87-111. [14] John I. McCool, “Comparison of models for the contact of rough surfaces”, Wear, 107, (1986) 37-60. [15] D. J. Whitehouse and J. F. Archard, “The Properties of Random Surfaces of Significance in their Contact”, Proc. R. Soc. London, Ser. A, 316, (1970) 97-121. [16] P. R. Nayak, “Random process model of rough surfaces”, J. Lubrication Technol., 93, (1971) 398-407. [17] John I. McCool, “Non-Gaussian effects in microcontact”, Int. J. Mach. Tools Manufact., 32, (1992) 115-123. [18] Ning Yu and Andreas A. Polycarpou, “Contact of Rough Surfaces With Asymmetric Distribution of Asperity Heights”, ASME J. Tribol., 124, (2002) 367-376. [19] W. R. Chang, I. Etsion and D. B. Bogy, “An Elastic-Plastic Model for the Contact of Rough Surfaces”, ASME J. Tribol., 109, (1987) 257-263. [20] D. G. Evseev, B. M. Medvedev and G. G. Grigoriyan, “Modification of the Elastic-Plastic Model for the Contact of Rough Surfaces”, Wear, 150, (1991) 79-88. [21] S. Kucharski, T. Klimczak, A. Polijaniuk and J. Kaczmarek, “Finite-Elements Model for the Contact of Rough Surfaces”, Wear, 177, (1994) 1-13. [22] J. H. Horng, “An Elliptic Elastic-Plastic Asperity Microcontact Model for Rough Surfaces”, ASME J. Tribol., 120, (1998) 82-89. [23] Yongwu Zhao, David M. Maietta and L. Chang, “An Asperity Microcontact Model Incorporating the Transition From Elastic Deformation to Fully Plastic Flow”, ASME J. Tribol., 122, (2000) 86-93. [24] L. Kogut and I. Etsion, “Elastic-Plastic Contact Analysis of a Sphere and a Rigid Flat”, ASME Jour. Appl. Mech., 69, (2002) 657-662. [25] L. Kogut and I. Etsion, “A Finite Element Based Elastic-Plastic Model for the Contact of Rough Surfaces”, Tribol. Trans., 46, (2003) 383-390. [26] Yeau-Ren Jeng and Pei-Ying Wang, “An Elliptical Microcontact Model Considering Elastic, Elastoplastic, and Plastic Deformation”, ASME J. Tribol., 125, (2003) 232-240. [27] D. J. Whitehouse and J. F. Archard, “The Properties of Random Surfaces of Significance in their Contact”, Proc. R. Soc. London, Ser. A, 316, (1970) 97-121. [28] D. J. Whitehouse and M. J. Phillips, “Discrete Properties of Random Surfaces”, Proc. R. Soc. London, Ser. A, 290, (1978) 267-298. [29] D. J. Whitehouse and M. J. Phillips, “Two-Dimensional Discrete Properties of Random Surfaces”, Proc. R. Soc. London, Ser. A, 305, (1982) 441-468. [30] J. A. Greenwood, “A Unified Theory of Surface Roughness”, Proc. R. Soc. London, Ser. A, 393, (1984) 133-157. [31] M. S. Longuet-Higgins, “The Statistical Analysis of a Random, Moving Surface”, Proc. R. Soc. London, Ser. A, 249, (1957) 321-387. [32] M. S. Longuet-Higgins, “Statistical Properties of an Isotropic Random Surface”, Proc. R. Soc. London, Ser. A, 250, (1957) 157-174. [33] D. J. Whitehouse, “Surfaces:an essential link in nanotechnology”, Nanotechnology, 9, (1998) 113-117. [34] Athanasios Papoulis, “Probability, Random Variables and Stochastic Processes”, McGraw-Hill, 2001.
[35] R. S. Sayles and T. R. Thomas, “Surface topography as a nonstationary random process”, Nature, 271, (1978) 431-434. [36] B. B. Mandelbrot, “The Fractal Geometry of Nature”, Freeman, New York, 1982. [37] Paul Embrechts and Makoto Maejima, “Selfsimilar Processes”, Princeton University Press, New Jersey, 2002. [38] P. Hall and S. Davies, “On direction-invariance of fractal dimension on a surface”, Appl. Phys. A, 60, (1995) 271-274. [39] T. R. Thomas, B.-G. Rosen and N. Amini, “Fractal characterization of the anisotropy of rough surfaces”, Wear, 232, (1999) 41-50. [40] R. S. Sayles and T. R. Thomas, “The spatial representation of surface roughness by means of the structure function: a practical alternative to correlation”, Wear, 42, (1977) 263-276. [41] Albert-Laszls Barabási and Harry Eugene Stanley, “Fractal Concepts in Surface Growth”, Cambridge University Press, 1995. [42] M. V. Berry and T. M. Blackwell, “Diffractal echoes”, J. Phys. A: Math. Gen., 14, (1981) 3101-3110. [43] B. N. J. Persson, “Elastoplastic Contact between Randomly Rough Surfaces”, Phys. Rev. Lett., 87, (2001) 116101. [44] A. W. Bush, R. D. Gibson and G. P. Keogh, “The Limits of Elastic Deformation in the Contact of Rough Surfaces”, Mech. Res. Commun., 3, (1976) 169-174. [45] Ning Yu and Andreas A. Polycarpou, “Extracting Summit Roughness Parameters from Random Gaussian Surfaces Accounting for Asymmetry of the Summit Heights”, ASME J. Tribol., 126, (2004) 761-766. [46] J. F. Archard, “Single contacts and multiple encounters”, J. Appl. Phys., 32, (1961) 1420-1425. [47] T. R. Thomas and B. G. Rosen, “Determination of the optimum sampling interval for rough contact mechanics”, Tribology International, 33, (2000) 601-610. [48] Renato Buzio, Corrado Boragno, Fabio Biscarini, Francesco Buatier De Mongeot and Ugo Valbusa, “The contact mechanics of fractal Surfaces”, Nature Materials, 2, (2003) 233-236.
|