(3.236.228.250) 您好!臺灣時間:2021/04/19 23:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃健源
研究生(外文):Jian-yuan Huang
論文名稱:以分子動力學研究水奈米團簇與固態基板之吸附行為
論文名稱(外文):The molecular dynamics investigation into the adsorptionbehaviour of water nanocluster on a solid substrate
指導教授:趙健祥
指導教授(外文):Chien-hsiang Chao
學位類別:碩士
校院名稱:國立中山大學
系所名稱:機械與機電工程學系研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:56
中文關鍵詞:分子動力學水奈米團簇吸附行為固體基板
外文關鍵詞:Molecular dynamicsWater nanoclusterSolid substrateAdsorption behaviour
相關次數:
  • 被引用被引用:0
  • 點閱點閱:105
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文使用分子動力學(molecular dynamics,MD)研究水奈米團簇
在固體基板上的吸附行為。水勢能函數選擇了F3C (Flexible
three-Centered)模型。我們模擬了三種不同大小尺寸的水奈米團簇,半徑分別為5Ǻ,7Ǻ,10Ǻ。水分子與基板之間使用了五種吸附參數,代表基板親水性的強弱以探討不同尺寸水奈米團簇及基板親水性強弱對吸附行為的影響。模擬的結果顯示親水性越強,水分子被吸附於基板之上的數量越明顯,且外觀形狀有平坦的趨勢,接觸角會接近於0 度,接觸角小表示濕潤性很好,液體在固體表面上的分散程度越好。在親水性弱的固體基板上,水奈米團簇尺寸越大對於塗佈於固體基板上的效果越差,濕潤性差,代表液體在固體表面上的分散程度越差,在親水性強的固體基板上,水奈米團簇尺寸影響會越小。
In this paper, molecular dynamics is used to investigate into the adsorption behaviour of water nanocluster on a solid substrate. The potential function of water molecule is F3C (Flexible three-Centered)model. Water nanocluster with radius of 5Ǻ, 7Ǻ and 10Ǻ were studied. Five adsorption parameters between water molecules and the substrate were used to represent the hydrophilic magnitude. The influences of different size and interaction on adsorption behaviour were investigated. The simulation results indicate that when the hydrophilic magnitude is increasing, the water molecule number of adsorption on solid substrate increases, the water nanocluster tends to spread flatly on the substrate, and the contact angle was very close to zero, which represents better wettability. The larger water nanocluster distribute widely upon a substrate.
目錄
目錄……………………………………………………………………Ⅰ
表目錄…………………………………………………………………Ⅲ
圖目錄…………………………………………………………………Ⅳ
中文摘要………………………………………………………………Ⅴ
英文摘要………………………………………………………………Ⅵ
符號表…………………………………………………………………Ⅶ
縮寫表…………………………………………………………………XI
第1章 緒論....................................... 1
1.1 研究動機....................................... 1
1.2 文獻回顧....................................... 3
1.3 本文架構....................................... 8
第2章 分子動力學理論............................. 9
2.1 勢能函數...................................... 11
2.2 運動方程...................................... 16
2.3 分子動力學數值模擬方法........................ 18
2.4 無因次化...................................... 22
2.5 電場.......................................... 24
II
2.6 定向因子(orientation factor) ................. 25
2.7 氫鍵.......................................... 26
2.8 溫度控制...................................... 28
2.9 Ewald 總和.................................... 31
第3章 結果分析與討論............................ 33
3.1 水奈米團簇與基板吸附行為...................... 35
3.2 外加電場對水奈米團簇的影響.................... 44
第4章 結論建議.................................. 49
4.1 結論.......................................... 49
4.2 建議與未來展望................................ 51
參考文獻………………………………………………………52
1. N. J. English, “Molecular dynamics simulations of microwave effects on water using different long-range electrostatics methodologies,” Molecular Physics, Vol. 140, pp. 243-253(2006).
2. Y. Shen, A. Couzis et al., “Molecular dynamics study of the influence of surfactant structure on surfactant-facilitated spreading of droplets on solid surfaces,” Langmuir, Vol. 21, pp. 12160-12170(2005).
3. N. J. English, “Molecular dynamics simulations of microwave heating of water,” Journal of Chemical Physics, Vol. 118, pp. 1589-1592(2003).
4. X. Li, Y. Hu and H. Wang, “Modeling of lubricant spreading on a solid substrate,” Journal of Applied Physics, Vol. 99, pp. 024905-1~5(2006).
5. D. R. Heine, G. S. Grest and E. B. Webb, “Surface wetting of liquid nanodroplets: droplet-size effects,” Physical Review Letters, Vol. 95, pp. 107801-1~4(2005).
6. S. R. Jian, T. H. Fang and D. S. Chuu, “Effects of temperature on surface clusters by molecular dynamics simulation,” Physica B, Vol. 334, pp. 369-374(2003).
7. D. R. Heine, G. S. Grest and E. B. Webb, “Spreading dynamics of polymer nanodroplets,” Physical Review E, Vol. 68, pp. 061603-1~10(2003).
8. S. Matsumoto, S. maruyama and H. Saruwatari, “A molecular dynamics simulation of a liquid droplet on a solid surface,” ASME/JSME Thermal Engineering Conference, Vol. 2, pp. 557-562(1995).
9. S. Matsumoto, T. Kurashige et al., “Liquid droplet in contact with a solid surface,” Microscale Thermophysical Engineering, Vol. 2, pp. 49-62(1998).
10. S. Chandra, M. D. Marzo, Y. M. Qiao and P. Tartarini, “Effect of liquid-solid contact angle on droplet evaporation,” Fire Safely Journal, Vol. 27, pp. 141-158(1996).
11. N. Bentenitis, S. Krause and K. Benghanem, “Droplet deformation of a low-molecular-weight system in an lternating current electric field,” Langmuir, Vol. 21, pp. 790-792(2005).
12. M. Vergeles, A. Maritan, J. Koplik and J. R. Banavar, “Adhesion of solids,” Physical Review E, Vol. 56, pp. 2626-2634(1997).
13. L. Consolini, S. K. Aggarwal and S. Murad, “ A molecular dynamics simulation of droplet evaporation,” International Journal of Heat and Mass Transfer, Vol. 46, pp. 3179-3188(2003).
14. F. Rieutord, O. Rayssac and H. Moriceau, “Spreading dynamics of water droplets,” Physical Review E, Vol. 62, pp. 6861-6864(2000).
15. J. A. Nieminen, D. B. Abraham, M. Karttunen and K. Kaski, “Molecular dynamics of a microscopic droplet on solid surface,” Physical Review Letters, Vol. 69, pp. 124-127(1992).
16. M. H. Adao, M. D. Ruijter, M. Voue and J. D. Coninck, “Droplet spreading on heterogeneous substrates using molecular dynamics,” Physical Review E, Vol. 59, pp. 746-750(1999).
17. T. D. Blake and A. Clarke, “Contact angle relaxation during droplet spreading comparison between molecular kinetic theory and molecular dynamics,” Langmuir, Vol. 13, pp. 2164-2166(1997).
18. R. Ge, P. C. Clapp and J. A. Rifkin, “Molecular dynamics of a molten Cu droplet spreading on a cold Cu substrate,” Surface Science, Vol. 426, pp. L413-L419(1999).
19. J. Yaneva, A. Milchev and K. Binder, “ Dynamics of a spreading nanodroplet: a molecular dynamic simulation,” Macromolecular Theory and Simulations, Vol. 12, pp. 573-581(2003).
20. V. M. Samsoonv, V. V. Dronnikov, A. A. Volnukhina and S. D. Muravyev, “Molecular dynamical of structure formation after nanodroplet spreading over heterogeneous surfaces”, Surface Science, pp. 560-566(2003).
21. R. S. Allan, S. G. Mason, Proc. R. Soc. London Ser. A, Vol. 267, pp. 45-61(1962)
22. V. M. Samsonov, V. V. Dronnilov, “Molecular dynamics study of structure formation at spreading of nanodroplets composed of rod-like molecules,” Colloids and Surfaces A: Physicochem. Eng. Aspects, Vol. 239, pp. 119-124(2004).
23. W. Sun, Z. Chen and S. Y. Huang, “Molecular dynamics simulation of liquid methanol under the influence of an external electric field,” Fluid Phase Equilibria, Vol. 238, pp. 20-25(2005).
24. D. H. Jung, J. H. Yang and M. S. Jhon, “The effect of an external electric field on the structure of liquid water using molecular dynamics simulations,” Chemical Physics, Vol. 244, pp. 331-337(1999).
25. G. S. Grest, D. R. Heine and E. B. Webb, ”Liquid nanodroplets spreading on chemically patterned surfaces,” Langmuir, Vol. 22, pp. 4745-4749(2006).
26. M. Patra and P. Linse, “Simulation of grafted polymers on nanopatterned surfaces,” Nano Letters, Vol. 6, pp. 133-137(2006).
27. J. Irving and J. Kirkwood, ”The statistical echanical theory of transport processes. IV. the eqiatopms pf hydrodynamics,” Journal of Chemical Physics, Vol. 18, pp.817-829(1950).
28. J. Haile, “Molecular dynamics simulation: elementary methods, John Wiley & Sons, Inc., New York(1997).
29. B. Shi, S. Sinha, V. K. Dhir, “Molecular simulation of the contact angle of water droplet on a platinum surface,” Proceedings of IMECE2005(2005).
30. T. Kimura, S. Maruyama, “ A molecular dynamics simulation of water droplet in contact with a platinum surface,” The 6th ASME-JSME Thermal Engineering Joint Conference, TED-AJ03-183(2003).
31. M. Levitt, M. Hirshberg et al., “Calibration and testing of a water model for simulation of the molecular dynamics of proteins and nucleic acids in solution,” Journal of Physical Chemistry B, Vol. 101, pp. 5051-5061(1997).
32. D. A. Mologin, P. G. Khalatur et al., “Charged designed copolymers in the presence of multivalent counterions: a molecular dynamics study,” New Journal of Physics, Vol. 6, pp. 1-20(2004).
33. M. Cieplak, J. Koplik and J. R. Banavar, “Nanoscale fluid flows in the vicinity of patterned surfaces,”Physical Review Letters, Vol. 96, pp. 114502(2006).
34. D. Frenkel, B. Smit, ” Understanding molecular simulation,” Academic Press(1996).
35. H. Xiao, “Introduction to semiconductor manufacturing technology,” Pearson Education Taiwan Ltd(2006).
36. I. Bitsanis, G. Hadziioannou, “Molecular dynamics simulations of the structure and dynamics of confined polymer melts,” Journal of Chemical Physics, Vol. 92, pp. 3827-3847(1990).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
系統版面圖檔 系統版面圖檔