|
參考文獻 1.Y. Kondo,and Kunio Takayangi, “Synthesis and characterization of helical multi-shell gold nanowires”,Science. Vol.289, 606-608 (2000). 2.Kunio Takayangi , Y. Kondo,and H. Ohnishi, “Suspended gold nanowires:ballistic transport of electrons”, JSAP International .No.3 ,3-8(2001) 3.Y. Kondo,and Kunio Takayangi, ”Gold nanobridge stabilized by surface structure”, Physical Review Letters. Vol. 79, 3455-3458 (1997). 4.V. Rodrigues,and D. Ugate, “Real time imaging of atomistic process in one-atom-thick metal junctions”, Physical Review B. Vol.63, 073405-1 (2001). 5.G. S. Cheng et al , J. Mater. Res. Vol.15, 347 (2000). 6.Y. Li ,G. W. Meng, L. D. Zhang, and F. Phillipp, “Ordered semiconductor ZnO nanowire arrays and their photoluminescence properties”, Appl. Phys. Lett. Vol.76 (15), 2011 (2000). 7.K. Hiruma, M. Yazawa, T. Katsuyama, K. Ogawa, K. Haraguchi, M. Koguchi, and H. Kakibayashi, “Growth and optical properties of nanometer-scale GaAs and InAs whiskers” J. Appl. Phys. Vol.77(2) , 447 (1995). 8.Jing Kong, Nathan R. Franklin, Chongwu Zhou, Michael G. Chapline, Shu Peng, Kyeongjae Cho, and Hongjie Dai, “Nanotube Molecular Wires as Chemical Sensors” Science.Vol.287, 622 (2000). 9.J. Kong, M. G. Chapline,and H. Dai., “Functionalized Carbon Nanotubes for Molecular Hydrogen Sensors”, Adv. Mater. Vol.13, 1384 (2001). 10.川合知二 “圖解奈米技術” 工業技術研究院 11.C. C. Chen, C. Y. Chao, and Z. H. Lang, “Simple Solution-Phase Synthesis of Soluble CdS and CdSe Nanorods” Chem Mater. Vol.12, 1516 (2000). 12.Liberato Manna, Erik C. Scher, and A. Paul Alivisatos, “Synthesis of Soluble and Processable Rod-, Arrow-, Teardrop-, and Tetrapod-Shaped CdSe Nanocrystals” J. Am. Chem. Soc. Vol.122, 12700 (2000). 13.M. S. Gudiksen, and C. M. Lieber, “Diameter-Selective Synthesis of Semiconductor Nanowires” J. Am. Chem. Soc. Vol.122, 8801 (2000). 14.S. T. Lee, Y. F. Zhang, N. Wang, Y. H. Tang, I. Bello, C. S. Lee, and Y. W. Chung, “Semiconductor Nanowires from Oxides”, J. Mater. Res, Vol.14, pp.4503-4507(1999). 15.L. C. Chen , S. W. Chang, C. S. Chang, C. Y. Wen, J-J. Wu, Y. F. Chen, Y. S. Huang and K. H. Chen, “Catalyst- free and controllable growth of SiCxNy nanorods”, J. Phys. Chem. Solids. Vol.62, 1567 (2001). 16.Justin D. Holmes, Keith P. Johnston, R. Christopher Doty, and Brian A. Korgel, “Control of Thickness and Orientation of Solution-Grown Silicon Nanowires” Science. Vol.287, 1471 (2000). 17.Yadong Li, Hongwei Liao, Yi Ding, Yue Fan, Yue Zhang, and Yitai Qian, “Solvothermal Elemental Direct Reaction to CdE (E = S, Se, Te) Semiconductor Nanorod” Inorg. Chem. Vol.38, 1382 (1999) 18.二00一年奈米技術與分子電子學的重大發現 隋安莉 洪永 科 學發展 91.05 19.C. M. Lieber, "The Incredible Shrinking Circuit". Scientific American, September. PP.59 (2001) 20.Gemma Reguera, Kevin D. McCarthy, Teena Mehta, Julie S. Nicoll, Mark T. Tuominen, and Derek R. Lovley, “ Extracellular electron transfer via microbial nanowires”, Nature. Vol.435, 1098-1101 (20005). 21.J. D. Holmes, K. P. Johston, R. C. Doty, and B. A. Korgel, “Control of thickness and orientation of solution grown silicon nanowires”, Science. Vol.287. 1471-1473 (2000). 22.D. K. Nagesha, M. A. Whitehead, and J. L. Coffer , “ Biorelevant Calcification and Non-Cytotoxic Behavior in Silicon Nanowires ”, Advanced Materials. Vol.17 no.7, p921-924 (2005) 23.Y. Kondo,and Kunio Takayangi, “Synthesis and characterization of helical multi-shell gold nanowires”, Science. Vol.289. 606-608 (2000). 24.Kunio Takayangi , Y. Kondo,and H. Ohnishi, “Suspended gold nanowires:ballistic transport of electrons”, JSAP International. No.3 3-8(2001). 25.Y. Kondo,and Kunio Takayangi, ”Gold nanobridge stabilized by surface structure”, Physical Review Letters. Vol. 79. 3455-3458 (1997). 26.V. Rodrigues,and D. Ugate, “Real time imaging of atomistic process in one-atom-thick metal junctions”, Physical Review B. Vol.63, 073405-1 (2001). 27.S. Michotte, S. M. Tempfli, and L. Piraux, “Current-voltage characteristics of Pb and Sn granular superconducting nanowires”, Applied Physics Letters. Vol.82, 4119-4121 (2003). 28.M. Barbic, J. J. Mock, D.R. Smith, and S. Schultz, “Single crystal silver nanowires prepare by the metal amplification method ”, Journal of Applied Physics. Vol.91, 9341-9345 (2002). 29.Y. Oshima, H. Koizumi, K. Mouri, H. Hirayama, and K. Takayanagi, “Evidence of a single-wall platinum nanotube”, Physical Review B. Vol.65, 121401 (2002). 30.A. Sugawara, T. Coyle, G..G.. Hembree, and M.R.Scheinfein,”Self-organized Fe nanowire arrays prepared by shadow deposition on NaCl(110) templates”,Appl. Phys. Lett. Vol.70, 1043-1045(2001). 31.D. M. Gillingham, I. Linington, C. Muller, and J. A. C. Bland,”quantization of the conduction in Cu nanowires” Journal of Applied Physics. Vol.93, 7388-7389 (2003). 32.V. Rodrigues, T. Fuhrer, D. Ugarte, “Signature of atomic structure in the quantum conductance of gold nanowires”, Physical Review Letters. Vol.85, 4124-4127 (2000). 33.L. G. C. Rego, A. R. Rocha, V. Rodrigues, and D. Ugarte, “Role of structural evolution in the quantum conductance behavior of gold nanowires during streching”, Physical Review B. Vol.67, 045412-1 (2003). 34.V. Rodrigues, J. Bettini, A. R. Rocha, L. G. C. Rego, and D. Ugarte, “Quantum conductance in silver nanowries:Correlation between atomic structure and transport properties”, Physical Review B. Vol.65, 153402 (2002). 35.G. Schider, J. R. Krenn, W. Gotschy, B. Lamprecht, H. Ditlbacher, A. Leitner, and F. R. Aussenegg, “Optical properties of Ag and Au nanowire gratings”, Journal of Applied Physics. Vol.90, 3825-3830 (2001). 36.DeHon February “Array-Based Architecture for Molecular Electronics”André DeHon DeHon February (2002). 37.American Institute of Physics, The industrial physicist 20-23 (2003) 38.M.Terrones, F.Banhart, N.grobert, J.-C. Charlier, H.Terrones, and P.M.Ajayan, vol.89, number7, physical review letters, 12 augest (2002). 39.Papadopoulos. C, Rakitin. A, Li. J, Vedeneev. A.S, and Xu. J.M, “Electronic Transport in Y-Junction Carbon Nanotubes”. Phys. Rev. Lett. Vol.85, 3476-79. (2000). 40.Andriotis. A. N, Menon. M, Srivastava. D, and Chernozatonskii. L, “Rectification Properties of Carbon Nanotube "Y-Junctions"”. Phys. Rev. Lett.. Vol.87, 066802 (1-4) (2001) 41.Peidong. Yang , “Nanotechnology: Wires on water”. Nature. Vol.425, 243-244 (2003) 42.Dongmok Whang, Song. Jin, and Charles. M. Lieber, Nano lett. Vol.3, 951(2003). 43.Peter. A. Smith, Christopher. D. Nordquist, Thomas. N. Jackson, and Theresa. S. Mayer, Applied Physics Letter. Vol. 77, 28 (2000). 44.J. Jorritdms , M. A. M. Gils, J. M. Kerkhoff, and J. G. H. Stienen , Nanotechnology. Vol.7, 263-265. (1996) 45.E.C. Walter , K. Ng, M. P. Zach , R. M. Penner ,and F. Favier, Micoelectronic Enginnering. Vol.61, 62555-561(2002). 46.E. C. Walter , B. J. Murray , F. Favier, G. Kaltenpoth, M. Grunze, and R. M. Penner, ”Noble and Coinage Metal Nanowires by Electrochemical Step Edge Decoration”. J.Phys.Chem.B. Vol.106(44), 11407 -11411 (2002). 47.Hongwei. Li, Dae. Joon. kang, Mark. G. Blamire, and Willhelm. T. S. Huck, Nano letters ,Vol.2 No.4 347-349 (2002). 48.Jana. Zaumseil, Matthew. A. Meitl, Julia. W. P. Hsu, Bharat. R. Acharya, kirk. W. Baldwin, Yueh. Lin. Loo, and John. A. Rogers, Nano Lett. Vol.3, No.9,1223-1227 (2003). 49.Jun. Kameoka, David. czaplewski, haiqing. Liu. and H. G.. Craighead, ”Polymeric nanowire architecture” ,J.Mater. Chem. Vol.14, 1503-1505 (2004). 50.Henk. W. Ch. Postma, Mark. De. Jonge, Zhen. Yao, and Cees. Dekker, Phys. Rev. B. Vol.62, Num.16(2000). 51.Nojeh. A, Lakatos. G.. W, Peng, S, Cho. K, Pease. R. F. W, “A Carbon Nanotube Cross Structure as a Nanoscale Quantum Device”, Nano Lett. Vol.3, 1187.(2003). 52.”Soon nanodevices may have useful application for example,as ultrasensitive detectors of gas molecules and biologigal compounds”, Scientific American. (2001). 53.Xiangfeng. Duan, Yu. Huang, and Charles. M. Lieber, Nano Letters. Vol.2, No.5, 487-490 (2002). 54.D. Wolf, J.Wang, S. R. Phillpot, and H. Gleiter, Phys. Rev. Lett. Vol.74, 4686 (1995); J. Wang, D. Wolf, S. R. Phillpot, and H. Gleiter, Philos. Mag. A. Vol.73, 517 (1996). 55.A. Kara, and T. S. Rahman, Phys. Rev. Lett. Vol.81, 1453 (1998). 56.U. Stuhr, H. Wipf, K. H. Andersen, and H. Hahn, Phys. Rev. Lett. Vol.81, 1449 (1998). 57.K. Suzuki ,and K. Sumiyama, Mater. Trans, JIM .Vol.36, 188 (1995). 58.B. Fultz, L. Anthony, L. J. Nagel, R. M. Nicklow, and S. Spooner, Phys. Rev. B. Vol.52, 3315 (1995). 59.B. Fultz, J. L. Robertson, T. A. Stephens, L. J. Nagel, and S. Spooner, J.Appl.Phys.Vol.79, 8318(1996). 60.B. Fultz, C. C. Ahn, E. E. Alp, W. Struhrhahn, and T. S. Toellner, Phys. Rev. Lett. Vol.79, 937 (1997). 61.H. J. Fecht, Phys. Rev. Lett. Vol.65, 610 (1990). 62.M. Wagner, Acta Metall. Mater. Vol.40, 957 (1992). 63.H. Frase, L. J. Nagel, L. J. Robertson, and B. Fultz, Philos. Mag. B. Vol.75, 335 (1997). 64.H. Frase, B. Fultz, and J. L. Robertson, Phys. Rev. B. Vol.57, 898 (1998). 65.J. Trampenau, K. Bauszuz, W. Petry, and U. Herr, Nanostruct. Mater. Vol.6, 551 (1995). 66.J. J. Burton, “Configuration, energy, and heat capatity of small spherical clusters of atoms” . J.Chem.Phys.Vol.52 ,345 (1970). 67.V. Novotny, and P. P. M. Meincke, Phys.Rev.B. Vol.8, 4186,(1973). 68.M. Dickey, and A. Paskin, Phys. Rev. Lett. Vol.21,1441 (1968). 69.Wang. B. L, Wang. G. H, and Zhao. J. J , Phys. Rev. B. Vol.65, 235406(2002). 70.Sergio. R. Calvo, and Perla. B. Balbuena,“Molecular dynamics studies of phonon spectra in mono-and bimetallic nanoclusters”, Surface Science. Vol.581, 213–224 (2005). 71.P. H. Dederichs, C. Lehmann, and A. Scholz, “ Resonance Modes of Interstitial Atoms in FCC Metals”, Phys. Rev. Lett. Vol.31, 1130–1132 (1973). 72.J. Q. Broughton, and G. H. Gilmer, “Harmonic analysis of Lennard-Jones FCC grain boundaries”, Modelling. Simul. Mater. Sci. Eng. Vol.6, 393-404 (1998). 73.Kallinteris. G. C, Papanicolaou. N. I, and Evangelakis. G. A, Phys. Rev. B. Vol.55, 2150 (1997). 74.Lynn. L. W, Smith. H. G, and Nicklow. R. M, Phys. Rev. B. Vol.8, 3493(1973). 75.Nicklow. R. M, Gilat. G, Smith. H. G, Raubenheimer. L. J, and Wilkinson. M. K, Phys. Rev. Vol.164 ,922 (1967). 76.G. Gilat, and L. J. Raubenheimer* , “Accurate Numerical Method for Calculating Frequency- Distribution Functions in Solids”, Phys. Rev. Vol.144, 390–395 (1966). 77.Wang. B. L, Yin. S. G, Wang. G.. H, Buldum. A. P. and Zhao. J. J, Phys.Rev.Lett. Vol.86, 2046 (2000). 78.Wang. B. L, Yin. S. G, Wang. G. H. and Zhao. J. J, J. Phys.: Condens. Matter.Vol.13, L403–8 (2001). 79.G. Bilalbegović, “Structure and stability of finite gold nanowires”, Phys.Rev.B. Vol.58, 15412–15415 (1998). 80.J. Irving, and J. Kirkwood , “The statistical mechanical theorey of transport properties. IV. The equations of hydrodynamics,” Journal of Chemical Physics, Vol.18, pp. 817-829 (1950). 81.M. Baskes, J. Nelson, and A. Wright, , “Semiempirical modified embedded-atom potentials for silicon and germanium”, Phys. Rev. B., Vol. 40, Issue. 9, pp. 6085-6100 (1989). 82.M. Baskes , “Modified embedded-atom potentials for cubic materials and impurities”, Phys. Rev. B, Vol. 46, Issue. 5, pp. 2727-2742 (1992). 83.J. Slater, G. Koster, “Simplified LCAO method for periodic potential problem”, Physical Review, Vol. 94, No. 6, pp. 1498-1524 (1954). 84.C. Kittle , Introduction to Solid State Physics, John Wiley & Sons, New York. (1996). 85.V. Rosato, M. Guillope, and B. Legrand, “Thermodynamical and structural properties of f.c.c. transition metals using a simple tight-binding model”, Philosophical Magazine A, Vol. 59, No. 2, pp. 321-336 (1989). 86.F. Cleri, and V. Rosato, “Tight-binding potentials for transition metals and alloys”, Phys. Rev. B, Vol. 48 , pp. 22-33 (1993). 87.劉東昇,化學量子力學,徐氏基金會出版,台北,(1992). 88.江元生,結構化學,五南圖書出版,台北,(1998). 89.L. Colombo, “A source code for tight-binding molecular dynamicssimulation”, Computational Materials Science, Vol. 12, pp. 278-287 (1998). 90.F. Cleri, and V. Rosato, “Tight-binding potentials for transition metals and alloys”, Phys. Rev. B, Vol. 48, pp. 22-33 (1993). 91.J. Haile, Molecular Dynamics Simulation: Elementary Methods, John Wiley & Sons, Inc., New York. (1997). 92.D. Rapaport, The Art of Molecular Dynamics Simulation, Cambridge University Press, London. (1997). 93.N. Chandra, S. Namilae, and C. Shet, “Local elastic properties of carbon nanotubes in the presence of Stone- Wales defects”, Physical Review B, Vol. 69, 94101 (2004). 94.N. Tokita, M. Hirabayashi, C. Azuma, T. Dotera, “Voronoi space division of a polymer: Topological effects, free volume, and surface end segregation”, Journal of Chemical Physcs. Vol.120, 496 (2004). 95.D. Srolovitz, K. Maeda, V. Vitek, and T. Egami, “Structural defects in amorphous solids statistical analysis of a computer model”, Philosophical Magazine A. Vol. 44, 847-866 (1981). 96.N. Miyazaki, and Y. Shiozaki, JSME International journal Series A. Vol.39, 606(1996). 97.H. Ikeda, Y. qi, T. Cagin, K. Samwer, W. L. Johnsion, and W. A. Goddard, “Strain rate induced amorphization in metallic nanowires” Physical Review Letters Vol. 82, 2900-2903(1999). 98.M. P, Allen and D. J. Tildesley , Computer Simulation of Liquids, Clarendon press. Oxford. (1991). 99.J. W. Cooley, and J. W. Tukty, “An algonrithm for the mechine calculation of complex Fourier series ” , Mathematics Computation, vol. 19, 297-301(1965). 100.S. Nose, “A unified formulation of the constant temperature molecular dynamics methods”, Journal of Chemical Physical, Vol.81, 511,(1984). 101.W. Hoover, “Canonical dynamics: Equilibrium phase- spacedistributions” , Physical Review A, Vol.31,1695, (1985). 102.Cooper. G. R, and McGillem. C. D, Probabilistic Methods of Signal and System Analysis 2nd edn (New York: Holt,Rinehart & Winston) p 253. (1971)
|
| |