(3.236.6.6) 您好!臺灣時間:2021/04/23 21:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:李新葆
研究生(外文):Hsin-pao Li
論文名稱:熱軋鋼帶冷卻區輸送輥輪運轉故障之分析與改善方法研究
論文名稱(外文):Study of analysis and improvement methods on running breakdown for the table rollers of hot rolling strip cooling area.
指導教授:邱源成
指導教授(外文):Yuang-Cherng Chiou
學位類別:碩士
校院名稱:國立中山大學
系所名稱:機械與機電工程學系研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:115
中文關鍵詞:輥輪軋出輥輪軸承潤滑脂乳化軸向負荷
外文關鍵詞:rollerrun out tablebearingwateremulsificationaxial loadgrease
相關次數:
  • 被引用被引用:0
  • 點閱點閱:524
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
  熱軋鋼帶冷卻區之輸送輥輪,高速運轉於高溫及大量冷卻水之惡劣環境,且輥輪數量超過330支,所佔長度達128公尺。筆者深覺所服務之產線,該區輥輪故障搶修的發生頻率與處理時間均高,因此停產損失及維修成本浪費,每年約有數佰萬元至仟萬元以上不等。當區人員雖曾執行部份改善,但故障問題仍不時發生,於是採取縮短輥輪維修更換週期,及加強潤滑脂補充之暫時措施。如此不但浪費成本,而且不符合環保。
  本研究針對該區,收集許多損壞現象加以分析,認為軸承之潤滑不良,加上其承受異常軸向外力,為主要損壞原因,約佔輥輪運轉故障率之75%。而潤滑不良係因輥輪之軸承箱進水,造成潤滑脂乳化及其稠度降低,同時也會使軸承�袘k。若再加上輥輪自由端軸承功能失效,將使輥輪運轉於異常軸向外力之高負荷,且沒有適當的潤滑情況,軸承就容易快速惡化損壞,且常導致突發性搶修,而非計劃性或預防性之維修更換。
為改善軸承箱進水,本研究新設計擋水、排水與防水之油封配置及改善潤滑脂補給位置與迴路,並將溢流之潤滑脂收集等,以確實防止軸承箱進水,並兼顧環保。另一方面,也分析潤滑脂乳化後,稠度變化與增稠劑皂基含量之關係,尋求潤滑脂較佳之耐水穩定性及機械穩定性。新改善型式上線使用3個月期間,多次檢驗潤滑脂含水量,均保持在穩定的1.5%以下,且潤滑脂補給量,也大幅減少為現有設備補給量的十分之一以下。
為改善輥輪自由端軸承功能失效,本研究除了深入分析問題之來源外,亦針對原設計軸承箱內孔徑,修改尺寸公差及增加形狀公差,以確保完全餘隙鬆配與形狀精度,避免因製作精度不佳或其他疏失,形成與軸承干涉緊配之問題。
The rollers of run out table in Hot Strip Mill are operated with variable high rotational speed under a severe environment of high temperature and much cooling water around. And the table takes long space about 128 meters of length with over 330 rollers. The rollers of this area often break down, and it takes long to make urgent repair. So it costs about ten million NT dollars per year for mill shut-down. Although some improvements have been made before, the troubles still happens frequently. Then the temporary countermeasures of shortening the maintenance cycle and increasing the grease supply have been applied to prevent the break-down frequency from aggravation . But it wastes the cost and does not meet the environmental policy.
This study analyzes many damage phenomena. Then it assumes that the 75% of roller running break-down is bearing damage resulting from bad lubrication condition and abnormal axial load. The cooling water which penetrates into bearing housing will result in grease emulsification and its consistency diluting. This certainly causes the bad lubrication condition and bearing rusting. In the meantime, if the floating function of roller bearing is inactive, the bearings will be operated under abnormal high axial load and without appropriate lubrication. Then the bearing will be damaged rapidly and must be repaired quickly.
In order to improve bad lubrication and bearing rusting, this study modifies sealing arrangement and grease feeding circuit for bearing housing with the special functions of water obstruction, drainage and resistance to prevent water penetration. In addition, the overflow of grease will be collected to meet the environmental needs. Meanwhile, to look for better water resistance and mechanical stability for greasing, the study also discusses the relationship between consistency variation and thickening soap base after grease emulsification. During a three-month running of the new design , the water contents are stably under 1.5% which has greatly advanced. And the quantity of grease supply is under 10% of existing one.
In order to improve the inactive floating function of roller bearings, this study not only analyzes the derivation of problems but also modifies the dimensional tolerance and adds cylindricity of geometric tolerance for the bore of bearing housing. This will ensure complete loose fit and shape accuracy to prevent the interference fit between the bore and bearing caused by manufacturing inaccuracy or other mistakes
中文摘要………………………………………………………………………… i
英文摘要Abstract………………………………………………………………… ii
謝辭……………………………………………………………………………… iii
總目錄…………………………………………………………………………… iv
圖目錄…………………………………………………………………………… vii
照片目錄………………………………………………………………………… ix
第一章 緒論……………………………………………………………………… 1
1-1. 研究動機…………………………………………………………………… 1
1-2. 熱軋鋼帶冷卻區輸送輥輪設備及其功能介紹…………………………… 3
1-3. 輥輪運轉故障型態及各種要因探討……………………………………… 4
1-3-1. 各種要因分析…………………………………………………………… 4
1-3-2. 故障處理所需時間及停產損失………………………………………… 7
1-3-3. 文獻回顧………………………………………………………………… 8
1-3-4. 輥輪軸承損壞…………………………………………………………… 11
1-3-5. 外部制動力造成輥輪不轉……………………………………………… 17
1-3-6. 驅動馬達損壞…………………………………………………………… 17
1-3-7. 馬達與輥輪聯軸器損壞………………………………………………… 18
1-3-8. 馬達與輥輪對心不佳…………………………………………………… 18
1-4. 論文研究重點……………………………………………………………… 19
1-5. 論文研究方向流程及架構………………………………………………… 19

第二章 軸承箱進水造成潤滑脂乳化及軸承�袘k之原因與改善方法……… 22
2-1. 軸承箱原設計之防水功能及進水原因分析……………………………… 22
2-2. 軸承箱進水造成軸承�袘k及磨損之原因分析…………………………… 30
2-2-1. 軸承�袘k產生麻點坑洞刮痕及疲勞剝落現象………………………… 30
2-2-2. 軸承箱內孔環帶狀�袘k………………………………………………… 33
2-3. 軸承箱進水造成潤滑脂乳化之問題分析………………………………… 34
2-3-1. 改善前潤滑脂乳化之含水量趨勢……………………………………… 34
2-3-2. 潤滑脂乳化後含水量對稠度之影響…………………………………… 36
2-4. 軸承箱進水及潤滑脂品質改善方法……………………………………… 44
2-4-1. 軸承箱防水及排水相關功能之改善方法……………………………… 44
2-4-2. 軸承箱潤滑脂補給位置之改善………………………………………… 46
2-4-3. 潤滑脂從軸承兩側排放及收集之改善………………………………… 48
2-4-4. 軸承箱內預留空間以利潤滑脂流動…………………………………… 49
2-4-5. 軸承箱與兩側邊蓋間增加迫緊墊片防水滲入………………………… 49
2-4-6. 規定潤滑脂之皂基含量在7.5%以上之製造品質……………………… 51
2-5. 軸承箱進水之改善效果…………………………………………………… 59
第三章 輥輪軸承受異常外力卡死或損壞之原因與改善方法………………… 62
3-1. 輥輪兩側軸承軸向與徑向自動對心之原設計功能分析.………………… 62
3-1-1. 輥輪兩側軸承自由端與固定端之功能………………………………… 62
3-1-2. 輥輪兩側軸承箱與輥輪軸心自動徑向對心之功能…………………… 65
3-1-3. 輥輪總成快速更換功能與問題………………………………………… 66
3-2. 輥輪軸承受異常軸向外力卡死之磨損現象及原因……………………… 68
3-2-1. 軸承單側軌道面及滾子磨損之現象與分析…………………………… 68
3-2-2. 軸承內環双側軌道之推擠受力印痕與原因分析……………………… 71
3-2-3. 軸承箱內孔面�袉穹[查與影響分析…………………………………… 73

3-3. 輥輪軸承自由端功能失效時產生異常軸向外力之分析………………… 74
3-3-1. 軸承箱內孔徑與軸承外環徑異常干涉緊配之現象.…………………… 74
3-3-2. 輥輪運轉時受熱膨脹之異常軸向推力………………………………… 78
3-3-3. 錯誤組裝時產生之軸向預推力或預拉力……………………………… 79
3-3-4. 變形或尺寸與形狀公差錯誤產生之軸向預推力或預拉力…………… 88
3-4. 軸承箱與輥輪底座變形之原因分析……………………………………… 94
3-4-1. 軸承箱變形原因………………………………………………………… 94
3-4-2. 輥輪底座變形原因……………………………………………………… 95
3-5. 輥輪軸承受異常軸向及徑向外力之改善方法…………………………… 96
3-5-1. 軸承箱內孔徑製作尺寸與形狀公差之改善…………………………… 96
3-5-2. 輥輪底座及軸承箱製作之重要尺寸及形狀公差驗收標準…………… 97
3-5-3. 設計專用標準模板確認輥輪底座組裝前之平行度與中心距………… 98
3-5-4. 禁用加熱拆裝及火焰除�蚰H防止熱脹不均之變形…………………… 99
3-5-5. 輥輪底座兩側軸承箱及驅動馬達之承座面改採耐蝕材料防�蛂K…… 100
3-5-6. 重複使用軸承檢查項目必含內環軌道面……………………………… 102
第四章 其他故障問題討論…………………………………………………… 103
4-1. 外部制動力造成輥輪不轉之分析與改善方法…………………………… 103
4-2. 驅動馬達損壞之分析及改善方法………………………………………… 105
4-3. 馬達與輥輪聯軸器損壞之分析及改善方法……………………………… 106
4-4. 馬達與輥輪對心不佳之分析及改善方法………………………………… 107
第五章 結論…………………………………………………………………… 110
參考文獻……………………………………………………………………… 111
參考文獻
1.NSK,“New Bearing Doctor”日本精工株式會社 1999
2.SKF,“General Catalogue”June 2003
3.SKF,“軸承保養手冊”1992
4.SKF, “軸承綜合型錄”Apr 1984
5.FAG,“軸承綜合型錄”
6.邱源成,“磨潤學”國立中山大學機械與機電工程學系
7.林榮盛,“潤滑學”------
8.Kayaba, T. and KATO, K.,“The Adhesive Transfer of the Slip-Tongue and the Wedge”ASLE TRANSACTION,Vol 24, 2, 164-174
9.and KATO, K.,“Experimental of Junction Growth with a Junction Model”Wear., 51, pp 105-116 (1979)
10.Kayaba, T. and Hokkirigawa,K. and KATO, K. “Analysis of Abrasive Wear Mechanism by Successive Observation of Wear Process in SEM”PROCEEDINGS OF THE JSLE INTERNATIONAL TRIBOLOGY CONFERENCE July 8-10, 1985, Tokyo, Japan
11.Takao KAYABA and Satoshi Suzuki,“An Investigation of Surface Damages by Rolling Contact” Technology Reaorts, Tohoku Unive,Vol.41,No 1 (1976)
12.Yuang-Cherng Chiou , Jiunn-Rong Hwang,“relationship between the propagation of fatigue crack and the behavior of plastic flow in the surface layer under rolling-sliding contacts” Processdings of Japan International Tribology conference Nagoya,1990
13.Yasui, H; Yoshida, T; Komiya, H; Muzychenko, W,“Effect of Water on the Performance of Railroad Journal Roller Bearing Grease” Lubrication Engineering 36-6 P353-360 (1980)
14.ASTM,“Standard Test Method for Cone Penetration of Lubricating Grease”D217-97
15.Yoshiki Uejima and Ken Okamoto and Kenta Izaki,“Technology to Prolong Rolling Bearing Life Used in Steelmaking Plants” 川崎製鐵技報 33(2001) 1, 10-14

16.趙鵬程編譯,“軸承的使用與改善對策”全華科技圖書股份有限公司(1999)
17.趙鵬程,“#2 HSM R.O.T 馬達軸承維護改善”公司內部文件未發表(2002)
18.中油公司,“潤滑脂耐水穩定性試驗報告”公司內部文件未發表(2003~2006)
19.NAKAMURAJI CO.,Ltd Engineering Dept.“Instruction Manual of Welding Surface” 公司內部文件未發表(1998)
20.許有仁;吳瑞銘;張簡錦上,分別有多件有關“熱軋產線精軋機軋出輥輪問題與進水改善”之技術報告,公司內部文件未發表(2004)

FURTHER READING
21.沈頌文譯,“軸承的損耗及其對策”,徐氏基金會出版社
22.ASTM,“Standard Test Method for Kinematic Viscosity of Transparent and Opaque Liquids (the Calculation of Dynamic Viscosity) D445-01
23.Krasnokutskaya, ME; Nakonechnaya, MB; Sinitsyn, VV; Prokopchuk, VA; Mnishchenko, GG,“Influence of temperature on mechanical stability of lubricating greases” Chemistry & Technology of Fuels & Oils 18-1~2 P73-76 (1982)
24.Skryabin, VP; Vyboichenko, EI,“Comprehensive evaluation of grease quality in "friction units" (bearings)” Chemistry & Technology of Fuels & Oils 25-7~8 P361~P365 (1989)
25.Kasamatsu, k,“Development of the Auto-Measuring Equipment Run-Out-Table Roller Levels of Hot Strip Mill” Tetsu-to-Hagane Overseas 78-3 P T49-T52 (1982)
26.Lundberg, J; Berg, S ,“Grease-lubrication of roller bearings in railway waggons. Part 2: laboratory tests and selection of proper test methods” Industrial Lubrication and Tribology 52-2 P76-85 (2000)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔