跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.85) 您好!臺灣時間:2024/12/07 10:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王蓉儀
研究生(外文):Rong-yi Wang
論文名稱:非代數單調之多值函數
論文名稱(外文):Nonmonotone Multivalued Mappings
指導教授:蔣永延
指導教授(外文):Yung-yen Chiang
學位類別:碩士
校院名稱:國立中山大學
系所名稱:應用數學系研究所
學門:數學及統計學門
學類:數學學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:38
中文關鍵詞:廣義變分不等式(S)_+ 條件廣義向量變分不等式(S)_+^1 條件
外文關鍵詞:generalized variational inequalitiesgeneralized vector variational inequalities(S)_+ condition(S)_+^1 condition
相關次數:
  • 被引用被引用:0
  • 點閱點閱:261
  • 評分評分:
  • 下載下載:11
  • 收藏至我的研究室書目清單書目收藏:0
令 T 是一個從拓樸向量空間 X 的子集映至 X* 的多值函數。此文章主要是討論 T 滿足 (S)_+ 條件和 T 滿足 (S)_+^1 條件之間的關係。為了整合單值與多值函數之 (S)_+ 條件的定義,我們將 [9] 中對於單值函數定義的 (S)_+^w 條件延拓至多值函數的情形。上列這些條件對於映至 L(X,Z) 之函數亦可定義,其中 Z 是賦序拓樸向量空間。利用這些條件,我們推導了一些廣義向量變分不等式與廣義變分不等式的存在性結果。
Let T be a multivalued mapping from a nonempty subset of a topological vector space into its topological dual. In this paper, we discuss the relationship between the multivalued mapping T satisfying the (S)_+ condition and T satisfying the (S)_+^1 condition. To unify the (S)_+ condition for single-valued and multivalued mappings, we introduce the weak (S)_+ condition for single-valued mappings defined in [9] to multivalued mappings. The above
conditions extend naturally to mappings into L(X,Z), where Z is an ordered Hausdorff topological vector space. We also derive some existence results for generalized vector
variational inequalities and generalized variational inequalities associated with mappings which satisfy the (S)_+, (S)_+^1 or weak (S)_+ condition.
1. Introduction 2
2. Preliminary 4
3. The (S)_+ and (S)_+^1 Conditions 7
4. Generalized Vector Variational Inequalities 19
5. Appendix 27
[1] C.D. Aliprantis and K.C. Border, Infinite Dimensional
Analysis, Springer-Verlag, Berlin, 1999.

[2] Q.H. Ansari, X.Q. Yang, and J.C. Yao, Existence and Duality of Implicit Vector Variational Problems, Numerical Functional Analysis and Optimization, Vol.22, pp.815-829, 2001.

[3] C. Berge, Topological Spaces, includung a treat of multivalued Functions, Vector Spaces and Convexity, Oliver and Boyd Ltd., 1963.

[4] F.E. Browder, Existence Theorems for Nonlinear Partial Differential Equations, Proceedings of Symposia in Pure Mathematics, Vol.16, pp.1-60, 1970.

[5] O. Chadli, Y. Chiang, and S. Huang, Topological pseudomonotonicity and vector equilibrium problems, Journal of Mathematical Analysis and Applications, Vol.270, pp.435-450, 2002.

[6] O. Chadli, N.C. Wong, and J.C. Yao, Equilibrium Problems with Applications to Eigenvalue Problems,
Journal of Optimization Theory and Applications, Vol.117, No.2, pp.245-266, 2003.

[7] Y. Chiang, Vector Superior and Inferior, Taiwanese Journal of Mathematics, Vol.8, No.3, pp.477-487, 2004.

[8] Y. Chiang, The (S)_+^1 Condition for Generalized Vector Variational Inequalities, Journal of Optimization Theory and Applications, Vol.124, No.3, pp.581-594, 2005.

[9] Y. Chiang, The (S)_+-Condition for Vector Equilibrium Problems, Taiwanese Journal of Mathematics, Vol.10, No.1, pp.31-43, 2006.

[10] Y. Chiang, Generalized Vector Variational Inequalities Assosiated with Nonmonotone Multivalued Mappings, preprint.

[11] Y. Chiang and J.C. Yao, Vector Variational Inequalities and the (S)_+ Condition, Journal of Optimization Theory and Applications, Vol.123, No.2, pp.271-290, 2004.

[12] J.B. Conway, A Course in Functional Analysis, 2nd Edition, Springer-Verlag, New York, 1990.

[13] P. Cubiotti, On the Discontinuous Infinite-Dimensional Generalized Quasivariational Inequality Problem, Journal of Optimization Theory and Applications, Vol. 115, pp. 97-111, 2002.

[14] P. Cubiotti, Generalized Quasivariational Inequalities in Infinite-Dimensional Normed Spaces, Journal
of Optimization Theory and Applications, V0l. 92, pp. 457-475, 1997.

[15] P. Cubiotti, Generalized Quasivariational Inequalities without Continuities, Journal of Optimization
Theory and Applications, V0l. 92, pp. 477-495. 1997.

[16] P. Cubiotti and J.C. Yao, Multivalued (S)_+^1 Operators and Generalized Variational Inequalities, Computers and Mathematics with Applications, Vol.29, No.12, pp.49-56, 1995.

[17] J. Diestel, Sequences and Series in Banach Spaces, Springer-Verlag, New York, 1984.

[18] J.S. Guo and J.C. Yao, Variational Inequalities with Nonmonotone Operators, Journal of Optimization Theory and Applications, Vol.80, No.1, pp.63-74, 1994.

[19] G. Isac and M.S. Gowda, Operators of Class (S)_+^1, Altman''s Condition and the Complementarity Problem,
Journal of the Faculty of Science, University of Tokyo, Section IA, Mathematics Vol. 40, pp.1-16, 1993.

[20] L.V. Kantorovich and G.P. Akilov, Functional Analysis, 2nd Edition, pergamon, 1982.

[21] E. Klein and A.C. Thompson, Theory of Correspondences, John Wiley and Sons, New York, 1984.

[22] G. Kothe, Topological Vector Spaces I, Springer-Verlag, Berlin, Heidelberg, 1983.

[23] J.R. Munkres, Topology, 2nd Edition, Prentice Hall, Inc., NJ, 2000.

[24] L. Narici and E. Beckenstein, Topological Vector Spaces, Marcel Dekker, Inc., 1985.

[25] W. Rudin, Functional Analysis, 2nd Edition, McGraw-Hill, 1991.

[26] H.H. Schaefer and M.P. Wolff, Topological Vector Spaces, 2nd Edition, Springer-Verlag, New York, 1999.

[27] E. Zeidler, Nonlinear Functional Analysis and its Applications, Vol II/A, Linear Monotone
Operators, Springer-Verlag, New York, 1990.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top