跳到主要內容

臺灣博碩士論文加值系統

(44.220.251.236) 您好!臺灣時間:2024/10/11 04:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李碩祈
研究生(外文):Shuo-Chi Lee
論文名稱:一些奇異Sturm-Liouville算子的譜的結構
論文名稱(外文):The nature of spectrum for some singular Sturm-Liouville operators
指導教授:羅春光羅春光引用關係
指導教授(外文):Chun-Kong Law
學位類別:碩士
校院名稱:國立中山大學
系所名稱:應用數學系研究所
學門:數學及統計學門
學類:數學學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:56
中文關鍵詞:
外文關鍵詞:spectrumSturm-Liouville
相關次數:
  • 被引用被引用:0
  • 點閱點閱:161
  • 評分評分:
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
這份論文探討在半無窮區間上的 Sturm-Liouville 問題。在這裡,如同 Fourier 展開式一樣,我們也會有一個包含譜函數rho的 Fourier 積分的較普遍的 Parseval 等式。並且,這個函數rho跟 Titchmarsh-Weyl 的 m 函數相關,而 m 函數正好給出了這個 Sturm-Liouville 問題的 L^2 解。譜可以看成是譜函數的非常數點。參照 Titchmarsh 的專書,我們探討由不同的位勢函數 q 的漸近行為所組合的譜的狀況,例如當q趨向無窮、0或是負無窮。
We give a report on the Sturm-Liouville problem defined on semi-infinite interval. Here as an extension of the Fourier expansion, we have a Parseval equality involving a Fourier integral with respect to a spectral function rho. This function rho is also related to Titchmarsh-Weyl m-function m(lambda) giving L2 solutions of the problem. The spectrum can be viewed as nonconstant points of the spectral function. Following Titchmarsh’s monograph, we shall investigate the nature of the spectrum associated with different asymptotic behaviors of the potential function q, namely, when q→∞, q→0 or q→-∞.
1 Introduction 1
2 Titchmarsh-Weyl m-functions and spectral functions 10
2.1 Resolvent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 m-function and the spectral function . . . . . . . . . . . . . . . . 18
2.3 Stieltjes Inversion Formula . . . . . . . . . . . . . . . . . . . . . . 25
3 The dependence of spectrum on the potential function 29
3.1 The case when q(x) ! 1 . . . . . . . . . . . . . . . . . . . . . . 30
3.2 The case when q(x) ! 0 . . . . . . . . . . . . . . . . . . . . . . . 32
3.3 The case when q(x) ! −1 and R1 0 |q(x)|−12 dx is divergent . . . . 37
3.4 The case when q(x) ! −1 and R1 0 |q(x)|−12 dx is convergent . . . 46
[1] G. Birkhoff and G. C. Rota, Ordinary Differential Equations, 4th ed., Wiley, New York, (1989).
[2] E. A. Coddington and N. Levinson, Theory of Ordinary Differential Equations, McGraw-Hill, New York, (1955).
[3] G. B. Folland, Fourier Analysis and its Applications, Wadsworth & Brooks/Cole, Pacific Grove, California, (1992).
[4] A. Kirsch, An Introduction to the Mathematical Theory of Inverse Problems, Springer-Verlag, New York, (1996).
[5] B. M. Levitan and I. S. Sargsjan, Sturm-Liouville and Dirac Operators, Kluwer Academic Publishers, Dordrecht, (1991).
[6] M. A. Naimark, Linear Differential Operators Part II, Frederick Ungar Publishing Co, New York, (1968).
[7] E. C. Titchmarsh F.R.S, Eigenfunction Expansions Associated with Second-Order Differential Equations Part I, Clarendon Press, Oxford, (1962).
[8] T. E. Wang, An Inverse Nodal Problem on Semi-infinite Intervals, Unpublished Master Thesis, National Sun Yat-sen University, Kaohsiung, Taiwan, (2006).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top