|
[1] C. Berenstein, D.C. Chang and E. Wang, Determining a Surface Breaking Crack from Steady State Electrical Boundary Measurements Reconstruction, Method Rend. Istit. Mat. Univ. Trieste Vol XXIX, 63-92 (1997). [2] Z.C. Li and T.T. Lu, Singularities and Treatments of Elliptic Boumdary Value Problems, Mathematical and Computer Modelling, 31(2000), 97-145. [3] Electricite de France, Direction des Etudes et Recherches, Identification of planar cracks by complete overdetermined data: inversion formulae, Inverse Problems, 12 (1996) 553-563. [4] Z. C. Li, R. Meathon and P. Sermer, Boundary methods for solving elliptic problems with singularities and interfaces, SIAM J. Numer. Anal., 24 (1987) 487-498. [5] Z. C. Li and R. Mathon, Error and stability analysis of boundary methods for elliptic problems with interfaces, Math. Comput., 54 (1990), 41-61. [6] Z. C. Li, Combined Methods for Elliptic Equations with Singularities, Interfaces and Infinities, Kluwer Academic Publishers, Boston, Amsterdam, 1998. [7] Z. C. Li, T. T. Lu and H. Y. Hu, The collocation Trefftz method for biharmonic equations with crack singularities, Eng. Anal. Bound. Elem., 28 (2004) 79-96. [8] T. T. Lu, H. Y. Hu and Z. C. Li, Highly accurate solutions of Motz’s and the cracked beam problem, Eng. Anal. Bound. Elem., 28 (2004),1387-1403. [9] G. Alessandrini, Stable determination of a crack from boundary measurements, Proc. Royal Soc. Edinb. Ser A 123, No 3(1993), 497-516. [10] F. Santosa and M. Vogelius, A computational algorithm to determine cracks from electrostatic boundary measurements , Int. J Engng Sci. 29, No. 8(1991), 917-937. [11] V. Liepa, F. Santosa and M.Vogelius, Crack determination from boundary measurements-reconstruction from experimental data, J. Nondestructive Evaluation 12 (1993), 163-173. [12] A. Friedman and M. Vogelius, Determine cracks by boundary measurements Indiana Math. J. 38 (1989), 527-556. [13] A. Elcrat R. Isakov and O. Neculoiu, On finding a surface crack from boundary measurements, Inverse Problems 11 (1995), 343-352. [14] F. Erdogan, The crack problem for bonded nonhomogeneous naterials under antiplane shear loading. J Appl Mech Trans ASME 52 (1985), 823-828. [15] M. Ozturk, F. Erdogan, Antiplane shear crack problem in bonded materials with a graded interfacial zone. Int J Eng Sci 31 (1993), 1641-1657. [16] F. Delale, F. Erdogan, The crack problem for a nonhomogeneous plane. J Appl Mech Trans ASME 50 (1983), 609-614. [17] S. Kadioglu, S. Dag, S. Yahsi, Crack problem for a functionally graded layer on an elastic foundation. Int J Frac 94 (1998), 63-77. [18] S. Ueda, T. Mukai, The surface crack problem for a latered elastic medium with a functionally graded nonhomogeneous interface. JSME Int J Ser A 45 (2002), 371-378. [19] S. Ueda, Crack in functionally graded piezoelectric strip bonded to elastic surface layers under electromechanical loading. Theo Appl Frac Mech 40 (2003), 225-236. [20] F. Erdogan, G.D. Gupta, T.S. Cook, Numerical solution of singular integral equations. In: Sih G.C. (ed) Mechanics of fracture 1: method of analysis and solution of crack problem, Chap 7, The Netherlands, Noordhoff International Publishing, Leyden (1973). [21] Lam, K. Y., Liu, G. R., Wang, Y. Y. Time harmonic response of a vertical crack in plates. Theoretical and Applied Fracture Mechanics, 27 (1997), 21- 28. [22] G.R. Liu, J.D. Achenbach, Strip element method to analyze wave scattering by cracks in anisotropic laminated plates. ASME J. Applied Mechanics 62 (1995), 607-613. [23] K. Bryan and M. Vogelius, A computational algorithm to Deter mine crack locations from electrostatic boundary measurements . The case of multiple cracks, Int. J. Engng Sci. 32, No. 4 (1994), 579-603
|