跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2024/12/13 20:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳政裕
研究生(外文):Cheng-yu Chen
論文名稱:圓上徑向裂縫問題之計算
論文名稱(外文):Computation of Radial Crack on a Disk
指導教授:呂宗澤
指導教授(外文):Tzon-Tzer Lu
學位類別:碩士
校院名稱:國立中山大學
系所名稱:應用數學系研究所
學門:數學及統計學門
學類:數學學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:35
中文關鍵詞:裂縫
外文關鍵詞:crack
相關次數:
  • 被引用被引用:0
  • 點閱點閱:128
  • 評分評分:
  • 下載下載:6
  • 收藏至我的研究室書目清單書目收藏:0
這篇論文中,我們使用邊界近似法去解決一個圓上徑向裂縫的問題。假設在一個單位圓上,直線裂缝從圓的邊緣裂向圓心。工程上利用電極的發射與接收,可以測出電極與裂縫的角度。我們寫出這個問題的數學模型,並且利用邊界近似法去計算這模型在各種不同的角度下的數值。最後再利用這些數值結果,反過來決定裂縫的位置。
This thesis uses the boundary approximation method to solve a crack problem. On a unit circle, assume there is a crack along the radial direction and extended to the edge. In engineering we can use current electrodes to detect the angle between the crack and electrodes. We first write down the mathematical model for this problem. Then use the boundary approximation method to compute its numerical solutions under different angles. Finally we try to use these different numerical results to probe the position of the crack.
1 Introduction . . . . . . . . . . . . . . . . . 2
2 Laplace Solutions . . . . . . . . . . . . . . .3
3 Crack Problem . . . . . . . . . . . . . . . . 6
4 Boundary ApproximationMethod . . .. . . . . . 13
5 Numerical Results . . . . . . . . . . . . . 19
[1] C. Berenstein, D.C. Chang and E. Wang, Determining a Surface Breaking Crack from Steady State Electrical Boundary Measurements Reconstruction, Method Rend. Istit. Mat. Univ. Trieste Vol XXIX, 63-92 (1997).
[2] Z.C. Li and T.T. Lu, Singularities and Treatments of Elliptic Boumdary Value Problems, Mathematical and Computer Modelling, 31(2000), 97-145.
[3] Electricite de France, Direction des Etudes et Recherches, Identification of planar cracks by complete overdetermined data: inversion formulae, Inverse Problems, 12 (1996) 553-563.
[4] Z. C. Li, R. Meathon and P. Sermer, Boundary methods for solving elliptic problems with singularities and interfaces, SIAM J. Numer. Anal., 24 (1987) 487-498.
[5] Z. C. Li and R. Mathon, Error and stability analysis of boundary methods for elliptic problems with interfaces, Math. Comput., 54 (1990), 41-61.
[6] Z. C. Li, Combined Methods for Elliptic Equations with Singularities, Interfaces and Infinities, Kluwer Academic Publishers, Boston, Amsterdam, 1998.
[7] Z. C. Li, T. T. Lu and H. Y. Hu, The collocation Trefftz method for biharmonic equations with crack singularities, Eng. Anal. Bound. Elem., 28 (2004) 79-96.
[8] T. T. Lu, H. Y. Hu and Z. C. Li, Highly accurate solutions of Motz’s and the cracked beam problem, Eng. Anal. Bound. Elem., 28 (2004),1387-1403.
[9] G. Alessandrini, Stable determination of a crack from boundary measurements, Proc. Royal Soc. Edinb. Ser A 123, No 3(1993), 497-516.
[10] F. Santosa and M. Vogelius, A computational algorithm to determine cracks from electrostatic boundary measurements , Int. J Engng Sci. 29, No. 8(1991), 917-937.
[11] V. Liepa, F. Santosa and M.Vogelius, Crack determination from boundary measurements-reconstruction from experimental data, J. Nondestructive Evaluation 12 (1993), 163-173.
[12] A. Friedman and M. Vogelius, Determine cracks by boundary measurements Indiana Math. J. 38 (1989), 527-556.
[13] A. Elcrat R. Isakov and O. Neculoiu, On finding a surface crack from boundary measurements, Inverse Problems 11 (1995), 343-352.
[14] F. Erdogan, The crack problem for bonded nonhomogeneous naterials under antiplane shear loading. J Appl Mech Trans ASME 52 (1985), 823-828.
[15] M. Ozturk, F. Erdogan, Antiplane shear crack problem in bonded materials with a graded interfacial zone. Int J Eng Sci 31 (1993), 1641-1657.
[16] F. Delale, F. Erdogan, The crack problem for a nonhomogeneous plane. J Appl Mech Trans ASME 50 (1983), 609-614.
[17] S. Kadioglu, S. Dag, S. Yahsi, Crack problem for a functionally graded layer on an elastic foundation. Int J Frac 94 (1998), 63-77.
[18] S. Ueda, T. Mukai, The surface crack problem for a latered elastic medium with a functionally graded nonhomogeneous interface. JSME Int J Ser A 45 (2002), 371-378.
[19] S. Ueda, Crack in functionally graded piezoelectric strip bonded to elastic surface layers under electromechanical loading. Theo Appl Frac Mech 40 (2003),
225-236.
[20] F. Erdogan, G.D. Gupta, T.S. Cook, Numerical solution of singular integral equations. In: Sih G.C. (ed) Mechanics of fracture 1: method of analysis and solution of crack problem, Chap 7, The Netherlands, Noordhoff International Publishing, Leyden (1973).
[21] Lam, K. Y., Liu, G. R., Wang, Y. Y. Time harmonic response of a vertical crack in plates. Theoretical and Applied Fracture Mechanics, 27 (1997), 21-
28.
[22] G.R. Liu, J.D. Achenbach, Strip element method to analyze wave scattering by cracks in anisotropic laminated plates. ASME J. Applied Mechanics 62 (1995), 607-613.
[23] K. Bryan and M. Vogelius, A computational algorithm to Deter mine crack locations from electrostatic boundary measurements . The case of multiple cracks, Int. J. Engng Sci. 32, No. 4 (1994), 579-603
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top