跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2024/12/15 04:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃柏仁
研究生(外文):Bo-Jen Huang
論文名稱:利用紫外線/臭氧處理氣相中1,3-丁二烯與乙酸甲氧基異丙酯之反應動力研究
論文名稱(外文):Kinetic Study on Degradation of Gas-phase 1, 3-Butadiene and Propylene Glycol Monomethyl Ether Acetate (PGMEA) by UV/O3
指導教授:周明顯周明顯引用關係
指導教授(外文):Ming-Shean Chou
學位類別:博士
校院名稱:國立中山大學
系所名稱:環境工程研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:94
語文別:英文
論文頁數:122
中文關鍵詞:丁二烯高級氧化程序揮發性有機物質乙酸甲氧基異丙酯光解作用臭氧化紫外線/臭氧
外文關鍵詞:butadiene (BD)propylene glycol monomethyl ether acetate (PGMEA)photolysisadvanced oxidation process (AOPs)ozonation and UV/O3Volatile organic compounds (VOCs)
相關次數:
  • 被引用被引用:8
  • 點閱點閱:402
  • 評分評分:
  • 下載下載:75
  • 收藏至我的研究室書目清單書目收藏:1
本研究為探討UV/O3單獨處理BD與PGMEA的反應動力學,在不�袗�製之反應器(100 cmL × 20 cmW × 85 cmH)內設置四片隔板(20 cmW × 65 cmH),將其區分為五個空間,使氣體流況模擬柱塞流。每個空間內均裝設一具U型UV燈,氣流行進方向與UV燈軸垂直,反應器有效體積為170 L。供試氣體為60與120 L/min空氣,內含50 ppm低濃度的BD或PGMEA。觀測不同的進氣之相對濕度(relative humidity, RH)、不同的最初臭氧劑量(以O3與BD最初莫爾比m表示),與兩組不同的UV能量(electric power input)照射下,在不同的氣體空間時間(space time)時濃度之變化,以探究BD與PGMEA為UV光解、與臭氧接觸而臭氧化(ozonation),與為UV/O3分解之動力學,並求出適當之操作參數。
反應動力模式顯示,光解與UV/O3處理低濃度揮發性有機物,均可以一階動力模式描述之。顯示此等反應對UV而言屬弱吸收反應。在有UV誘發反應中有機物反應速率均正比於UV體積能量輸入。在OH反應中,有機物消耗OH速率相對於總OH消耗速率比(ξ)可由反應動力模式模擬實驗結果求得。
氣體空間時間為85 sec與RH = 40 – 99%情況下,BD在波長185 nm之UV照射,且UV體積能量輸入分別為0.147 與0.294 W/L仍無法使BD進行光解。在臭氧反應,m = 3.5時,可達90% BD去除率,此程序中氣體濕度改變對BD臭氧化並無影響。UV/O3反應時,UV體積能量輸入0.147 W/L與m = 2.2,或UV體積能量輸入0.294 W/L與m = 1.6,均可獲致90% BD去除率,此程序中,臭氧(m = 0.5 – 4.4)、UV(0.147與0.294 W/L),與氣體相對濕度(RH = 40 – 99%)均對BD去除有影響,尤以m之影響遠大於UV能量與RH。
另外,在另一小型批次反應器(體積1.188 L)進行PGMEA反應,PGMEA可為波長185 nm之UV光解,其光解速率為PGMEA濃度的一階反應,而波長254 nm之UV則無光解發生。另在相同批次反應器進行臭氧化反應,結果顯示在m = 3.96與反應時間35 min情況下,PGMEA處理效率僅達50%。而柱塞流反應器試驗,氣體空間時間為85 sec與RH = 15 – 99%情況下,PGMEA臭氧化反應無法進行,但可進行光解反應。UV/O3反應方面,氣體空間時間為170 sec,UV體積能量輸入0.294 W/L與m = 2.9,PGMEA可獲致90%之去除率。此程序中,臭氧(m = 1.05 – 15.63)、UV能量(0.147與0.294 W/L),與氣體相對濕度(RH = 15 – 99%)均對PGMEA去除有影響,尤以UV能量之影響最大。
This study investigates the rate kinetics for BD and PGMEA oxidation by UV/O3 process. The reactor constructs of a 100 cm x 20 cm x 85 cm (L x W x H) stainless steel chamber, in which four vertical steel plates (20 cm x 65 cm, W x H) were inserted to establish a plug flow path for the flowing gas. The reactor has a total effective volume of 170 L. Each of the five compartments of the reactor is equipped with an individual UV irradiation system with a 3.0-cm x 15-cm (ID x L) quartz sheath that housed an UV lamp, and two electric UV power inputs of 0.147 or 0.294 W/L were obtained. The gas flows perpendicularly to the UV lamps in the reactor. The influent tested VOC concentration was adjusted to about 50 ppm, and the gas flows were controlled at the individual flow rate of 60 and 120 L/min. The effects of moisture content (relative humidity, RH), ozone dosage (initial molar ratio of ozone to the tested VOC, m) and UV volumetric electric power input on the removal of the tested VOCs are investigated in the study. Also, kinetic models of the tested VOCs by photolysis, ozonation and UV/O3 have been developed and confirmed with reference to the experimental data.
According to the kinetic models, both photolysis rate and oxidation rate by UV/O3 are following the first order behavior with respect to the tested VOC concentrations which are low. The result reveals the absorbance for the reactions is weak absorbance under UV irradiation. The reaction rates are proportional to the UV electric power inputs in UV-initiated reactions. And the parameter, ξ, which represents the ratio of OH radical consumption rate by the tested VOC to the total OH radical consumption rate, can be obtained by simulating the performance of experimental data of OH reactions.
The experimental results reveal that for BD oxidation with a gas space time of 85 sec and RH = 40 – 99%, BD photolysis did not occur at wavelength of 185 nm with UV electric power inputs of 0.147 and 0.294 W/L. The ozonation efficiency of BD reached 90% at m = 3.5, and RH had no influence on the removal efficiency of BD. The removal efficiencies by UV/O3 process reached 90% with m = 2.2 and 1.6 for UV power inputs of 0.147 and 0.294 W/L, respectively. The addition of ozone apparently encouraged BD removal efficiency by UV/O3 process. And the enhancement of ozone dosage (m = 0.5 – 4.4) would promote the decomposition of BD more effectively than the enhancements of UV power input (from 0.147 to 0.294 W L-1) and RH (from 40 to 99%).
For PGMEA photolysis in a batch reactor with volume of 1.188 L, the photolysis occurred at wavelength of 185 nm under UV irradiation. And the photolysis rate follows the first order behavior with respect to the concentration of PGMEA. But PGMEA photolysis did not occurred at UV wavelength of 254 nm. PGMEA ozonation was performed in the same batch reactor; and the removal efficiency of only 50% at m = 3.96 would take 35 min. So, PGMEA ozonation in the plug flow reactor did not be observed at the conditions of the gas space time of 85 sec and RH = 15 – 99%. Besides, the photolysis of PGMEA was carried out at the above conditions. The removal efficiency of PGMEA by UV/O3 could reach 90% at the conditions of the gas space time of 170 sec, UV volumetric electric power input of 0.294 W/L and m = 2.9. And the enhancement of UV power input (from 0.147 to 0.294 W L-1) would promote the decomposition of PGMEA more effectively than the addition of ozone dosage (m = 1.05 – 15.63) and RH = 15 – 99%.
謝誌 I
中文摘要 II
Abstract IV
Contents VII
List of Tables IX
List of Figures X
Nomenclature XV
Chapter 1 Introduction 1
1.1 Problems of Tested Volatile Organic Compounds (VOCs) 1
1.2 Advanced Oxidation Technologies (AOTs) 2
1.3 Literature Survey 3
1.4 Objects of Research 7
1.5 Organization of Dissertation 8
Chapter 2 Kinetics and Economic Factor for UV/O3 9
2.1 Ozonation Kinetics 12
2.2 Photolysis Kinetics 13
2.3 Hydroxyl Free Radical Reaction Kinetics 16
2.4 Economic Factor 23
Chapter 3 Degradation of Gas-phase 1,3-Butadiene by UV/O3 25
3.1 Introduction 25
3.2 Experimental Setup and Operation 31
3.3 Results and Discussion 37
3.4 Summary 59
Chapter 4 Decomposition of Gas-phase PGMEA by UV/O3 64
4.1 Introduction 64
4.2 Experimental Setup and Operation 66
4.3 Results and Discussion 70
4.4 Summary 88
Chapter 5 Conclusion Remarks 91
5.1 Conclusions 91
5.2 Recommendation for Future Work 93
References 95
Appendix I Author’s Publication List I-1
Appendix II 作者簡歷 II-1
Atkinson, R., Kinetics and Mechanisms of the Gas-phase Reactions of the NO3 Radical with Organic Compounds, J. Phys. Chem. Ref. Data, 1991, 20, 459-507.
Atkinson, R., Gas-phase Tropospheric Chemistry of Organic Compounds, J. Phys. Chem. Ref. Data, Monograph, 1994, 2, 1-216
Atkinson, R., Atmospheric Chemistry of VOCs and NOX, Atmos. Environ., 2000, 34, 2063-2101.
Atkinson, R.; Arey, J.; Aschmann, S.M.; Corchnoy, S.B.; Shu, Y., Rate Constants for the Gas-phase Reactions of cis-3-hexen-1-ol, cis-3-hexenylacetate, trans-2-hexenal, and Linalool with OH and NO3 Radicals and O3 at 296 ± 2K, and OH Radical Formation Yields from the O3 Reactions, Int. J. Chem. Kinet., 1995, 27, 941-955.
Atkinson, R.; Aschmann, S.M., Atmospheric Chemistry of the Monoterpene Reaction Products Nopinone, Camphenilone, and 4-acetyl-1-methylcyclohexene, J. Atmos. Chem., 1993 a, 16, 337-348.
Atkinson, R.; Aschmann, S. M., OH Radical Production from the Gas-Phase Reactions of O3 with a Series of Alkenes under Atmospheric Conditions, Environ. Sci. Technol., 1993 b, 27, 1357-1363.
Atkinson, R.; Aschmann, S.M.; Pitts, J.N., Kinetics of the Gas-phase Reactions of OH Radicals with a Series of α, β-unsaturated Carbonyls at 299 ± 2K, Int. J. Chem. Kinet., 1983, 15, 75-81.
Atkinson, R.; Aschmann, S.M.; Tuazon, E.C.; Arey, J.; Zielinska, B., Formation of 3-methylfuran from the Gas-phase Reaction of OH Radicals with Isoprene and the Rate Constant for its Reaction with the OH Radical, Int. J. Chem. Kinet., 1989, 21, 593-604.
Atkinson, R.; Aschmann, S.M.; Arey, J.; Shorees, B., Formation of OH radicals in the Gas-phase Reactions of O3 with a series of Terpenes, J. Geophys. Res., 1992 a, 97, 6065-6073.
Atkinson, R.; Baulch, D. L.; Cox, R. A.; Hampson, Jr. R. F.; Kerr, J. A.; Rossi, M. J.; Troe, J., Evaluated Kinetic and Photochemical Data for Atmospheric Chemistry Supplement IV, J. Phys. Chem. Ref. Data, 1992 b, 21, 1125-1394.
Atkinson, R.; Carter, W. P. L., Kinetics and Mechanisms of the Gas-Phase Reactions of Ozone with Organic Compounds under Atmospheric Conditions, Chem. Rev., 1984, 84, 437-470.
Atkinson, R.; Hasegawa, D.; Aschmann, S.M., Rate Constants for the Gas-phase Reactions of O3 with a Series of Monoterpenes and Related Compounds at 296±2K, Int. J. Chem. Kinet., 1990. 22, 871-887.
Barker, R.; Jones, A. R., Treatment of Malodorants in Air by the UV/ozone Technique, Ozone: science& Engineering, 1988, 10, 405-418.
Bolton, J. R. Ultraviolet Application Handbook, Bolton Photosciences Inc., 2001.
Bolton, J. R.; Bircher, K. G.; Tumas, W.; Tolman, C. A., Figures-of-Merit for the Technical Development and Application of Advanced Oxidation Technologies for Both Electric- and Solar- DrivenSystem, Pure Appl. Chem., 2001, 73, 627-637.
Calvert, J. G.; Atkinson, R.; Kerr, J. A.; Madronich, S.; Moortgat, G. K.; Wallington, T. J.; Yarwood, G., The Mechanisms of Atmospheric Oxidation of the Alkenes, Oxford University Press, New York, 2000.
Cheremisinoff, P. N., Industrial Odour Control, Butterworth-Heinemann Ltd., Great Britain, 1992.
Finlayson-Pitts, B. J.; Pitts, Jr. J. N., Atmospheric Chemistry: Fundamentals and Experimental Techniques, John-Wiley & Sons: New York, 1986.
Grosjean, D.; Grosjean, E.; Williams, E. L.II., Atmospheric Chemistry of Olefins: A Product Study of the Ozone-Alkene Reaction with Cyclohexane Added To Scavenge OH, Environ. Sci. Technol., 1994, 28, 186-196.
Halmann, M. M., Photodegradation of Water Pollutants, CRC Press, Inc., USA, 1996.
Kramp, F.; Paulson, S. E., The Gas Phase Reaction of Ozone with 1,3-Butadiene: Formation Yields of Some Toxic Products, Atmos. Environ., 2000, 34, 35-43.
Langlais, B.; Reckhow, D. A.; Brink, D. R., Ozone in Water Treatment: Application and Engineering, Lewis Publishers, Inc., USA, 1991.
Levenspiel, O., Chemical Reaction Engineering, 2nd ed., John Wiley & Sons, Inc., USA, 1972.
Liu, X.; Jeffries, H. E.; Sexton, K. G., Hydroxyl Radical and Ozone Initiated Photochemical Reactions of 1,3-Butadiene, Atmos. Environ., 1999, 33, 3005-3022.
Murg, M. N.; Schuler, M.; Eastmond, D. A., Evaluation of Micronuclei and Chromosomal Breakage in the 1cen-q12 Region by the Butadiene Metabolites Epoxybutene and Diepoxybutene in Cultured Human Lymphocytes, Mutagenesis, 1999, 14, 541-546.
Masschelein, W. J., Ozonization Manual for Water and Wastewater Treatment, John Wiley & Sons Ltd., USA, 1982.
Masschelein, W. J.; Rice, R. P., Ultraviolet Light in Water and Wastewater Sanitation, Lewis Publishers, CRC Press LLC, 2002.
Niki, H.; Marker, P. D.; Savage, C. M.; Breitenbach, L. P., Atmospheric Ozone-olefin Reactions, Environ. Sci. Technol., 1983, 17, 312A-322A.
NIST Chemistry Web Book, http://webbook.nist.gov/ (2005/9)
Oppenländer, T., Photochemical Purification of Water and Air, Wiley-Vch, Germany, 2003.
Orzechowska, G. E.; Paulson, S. E., Production of OH radicals from the Reactions of C4–C6 Internal Alkenes and Styrenes with Ozone in the Gas Phase, Atmos. Environ., 2002, 36, 571-581.
OSRAM HNS® UVC Lamps, Technical Information, MKAB/UV, Edition March 92.
Recio, L.; Meyer, K. G.; Pluta, L. J.; Moss,O. R.; Saranko, C. J., Mutational Specificity: Assessment of 1,3-butadiene Mutagenicity in the Bone Marrow of B6C3F1 lacl Transgenic Mice (Big Blue®): A Review of Mutational Spectrum and LACL Mutant Frequency after a 5-day 625 PPM 1,3-butadiene Exposure, Environmental and Molecular Mutagenesis, 1996, 28, 424-429.
Shareefdeen, Z.; Herner, B.; Webb, D.; Polenek, S.; Wilson, S., Removing Volatile Organic Compound (VOC) Emissions from a Printed Circuit Board Manufacturing Facility Using Pilot- and Commercial-Scale Biofilters, Environmental Progress. 2002, 21, 196-201.
Shechter, H., Spectrophotometric Method for Determination of Ozone in Aqueous Solution, Water Research Pergamon Press, 1973, 7, 729-739.
Shen, Y. S.; Ku, Y., Treatment of Gas-phase Trichloroethene in air by the UV/O3 Process, J. Hazard Materials, 1997, 54, 189-200.
Shen, Y. S.; Ku, Y., Decomposition of Gas-phase Chloroethenes by UV/O3 Process, Wa. Res., 1998, 32, 2669-2679.
Shen, Y. S.; Ku, Y., Treatment of Gas-phase Volatile Organic Compounds (VOCs) in air by the UV/O3 Process, Chemosphere, 1999, 38, 1855-1855.
Serpone, N.; Emeline, A. V., A Suggested Terms and Definitions in Photocatalysis and Radiocatalysis, Int. J. Photoenergy, 2002, 4, 91-131.
U.S. Environmental Protection Agency. Health Assessment of 1,3-Butadiene, EPA/600/P-98/001F, Office of Research and Development, National Center for Environmental Assessment, Washington Office: Washington, DC, 2002.
Wang, J. B.; Ray, M. B., Application of Ultraviolet Photooxidation to Remove Organic Pollutants in the Gas phase, Separation and Purification Technology, 2000, 18, 11-20.
Zepp, R. G., Quantum Yields for Reaction of Pollutants in Diliute Aqueous Solution, Environ. Sci. Technol. 1978, 12, 327-329.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊