跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2024/12/03 01:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李尚娟
研究生(外文):Shang-chuan Li
論文名稱:以蛇木屑生物濾床處理模擬晶圓製程排氣中揮發性有機物之研究
論文名稱(外文):Performance Study on the Cleaning of Air Streams Laden with Mixed VOC Compounds Used in Semiconductor Industries
指導教授:周明顯周明顯引用關係
學位類別:碩士
校院名稱:國立中山大學
系所名稱:環境工程研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:135
中文關鍵詞:半導體工業廢氣生物濾床揮發性有機物蛇木屑
外文關鍵詞:waste gas from semi-conductor manufacturing industryBiofiltervolatile organic compounds (VOCs)fern chips
相關次數:
  • 被引用被引用:7
  • 點閱點閱:318
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要目的在探討生物濾床法僅以單一填充介質(蛇木屑),模擬晶圓製造業處理排氣中低濃度混合VOC之揮發性有機物,以改善傳統混和堆肥、泥炭土之生物濾床易阻塞、濾料結塊及壓密的缺點,使生物濾床可達到更好的處理效果,並在研究過程中建立最佳化操作參數。
本研究進行含混合VOCs (IPA、Acetone、HMDS、PGME、PGMEA)之處理試驗。實驗設備為一雙層式壓克力製生物濾床,濾床外殼主體為一透明壓克力板,每層尺寸為0.40 m×0.40 m×0.70 mH,每層內填充蛇木屑濾料約56 L (0.40 m×0.40 m×0.30 mH),頂部為進氣空間,氣體為向下流式。二濾床主體由二層長方形壓克力板製槽體組合而成,各有一自動灑水設備,底槽收集自濾床下流之水分及排氣,廢氣藉由PVC管排出室外,廢液則以PVC管排放收集。
本實驗總共分為四個階段進行,實驗過程中,每星期約3次採集進出口氣體進行分析,每一階段之操作時間視生物濾床處理混合VOCs之效能而變,當去除率變化呈現穩定狀態時,即進行下一階段,實驗全部試驗時間為182天。
第I階段操作15天,濾床混合氣體有機負荷為15.1 g/m3.h,每日添加奶粉1.34 g/m3.d為營養源,氣體空塔停留時間(EBRT)為1.50 min,進氣流量為75 L/min,進氣混合VOCs濃度為159-284 mg/m3,經生物濾床處理後,出流濃度為3-18 mg/m3,平均去除率達96%。在第II階段,EBRT=0.75 min,濾床混合氣體有機負荷為11.44 g/m3.h,營養源(即溶奶粉)添加量1.34 g/m3.d,混合VOCs之進流濃度為99-126 mg/m3,經生物濾床處理後,出流濃度為1-19.6 mg/m3,平均VOC之去除率94 %。
第III階段操作67天,EBRT=0.75 min,濾床混合氣體有機負荷為22.8 g/m3.h,營養源(即溶奶粉)添加量2.0 g/m3.d。第56-97天VOC平均去除率僅48%,第105天即開始加入氮(來自尿素)、磷營養鹽後,第107天VOCs去除率即提升至80%,平均VOCs之去除率93%,顯示氮、磷是影響此階段去除率的主要因素。
第IV階段操作59天,EBRT=0.75 min,濾床混合氣體有機負荷為34.1 g/m3.h,營養源(即溶奶粉)添加量2.0-6.0 g/m3.d。此期間,因加入過多氮源(NH4Cl-N,負荷為12.35 g N/m3.d)而致過量氨氮的硝化使濾料pH值由7.8降低至5.8,經停止加入NH4Cl,增加即溶奶粉比例,並於第140天加入NaHCO3調整濾床pH值至7.5,使第140-145天之平均VOC去除率為92%,顯示濾床pH值是影響去除率的重要因素。
建議操作參數為生物濾床中濾料含水率維持在52-68%,濾料pH值為7-8之間,EBRT控制在0.75 min,混合VOC進氣濃度為150-450 mg/m3,有機負荷為 11.44-34.1 g/m3.h,總平均去除率可達94%。
This study armed to develop a biofilter packed only with fern chips for the removal of air-borne low concentration VOCs (volatile organic compounds) emitted from semiconductor manufacturing industries. The fern chip biofilters could avoid the shortcomings of traditional media, such as compaction, drying, and breakdown, which lead to the performance failure of the biofilters.
Performance of biofiltration for removal of simulated semiconductor manufacturing emitted gases consisting of IPA (isopropyl alcohol), acetone, HMDS (hexamethylene disilazane), PGME (propylene glycol monomethyl ether), and PGMEA (propylene glycol monomethyl ether acetate) was studied in a pilot-scale biofilter consisted of two columns (40-cmW x 40-cmL x 70-cmH acrylic column) arranged in series. Each column was packed with fern chips to a packing volume of around 56 L (0.40 m×0.40 m×0.35 mH). A sprinkler was set over the packed fern chips for providing them with water and nutrition solutions. Liquid leached from both layers of chips were collected in the bottom container of the column.
The experiment lasted for 182 days which was divided into four phases with varying influent gas flow rates and VOC concentrations. Gas samples collected around 3 times per week from the influent as well a the first and second stage effluents were analyzed for VOC concentrations. On a weekly basis, fern chips sampled from each column were also analyzed for getting pH, moisture, and the absorbed VOC content of the chips. Phase shifted if it obtained a quasi-steady state which was judged by the nearly unchanging VOC removal efficiencies.
Operation conditions of an empty bed retention time (EBRT) of 1.50 min and influent VOC concentrations of 159-284 mg/m3 were used in the Phase I experiment which lasted for 15 days. Nutrition of 1.34 g milk powder/m3.d was used in this phase and the conditions gave an average volumetric VOC loading (L) of 15.1 g/m3.h. Effluent VOC concentrations were 3-18 mg/m3 and an average VOC removal of 96% was obtained in this phase. An EBRT of 0.75 min, L of 11.44 g/m3.h, and nutrition of 1.34 g milk powder/m3.d were used in the Phase II experiment. VOCs in the gas could be removed from 90-126 to 1-19.6 mg/m3 and an average efficiency of 94% was obtained.
Following Phase II, an average VOC removal of only 48% was obtained with an EBRT of 0.75 min, nutrition of 2.0 g milk powder/m3.d, and L of 22.8 g/m3.h in Phases III experiment during the 56-97th days from the startup time. Additional nitrogen (urea) and phosphorus (potassium dihydrogen phosphate) was added to the media from the 105th day and the VOC removal increased to 80% at the 107th day. An average VOC removal of around 93% was obtained in phase III experiment. The results showed that enough nutrition is essential to the successful performance for the biofiltration process.
Phase IV experiment lasted for 59 days with an EBRT of 0.75 min, L of 34.1 g/m3.h, and nutrition of 2.0-6.0 g/m3.d. During the initial period of this phase, media pH dropped from 7.8 to 5.8 due to an excess nitrogen (ammonium chloride) addition as high as 12.35 g N/m3.d which resulted in nitrification reaction in the media. By stopping nitrogen, increasing milk powder dosing, and addition of NaHCO3 at the 140th day, pH restored to 7.5 in the following days. VOC removal increased to an average of 92% in the rest operation days.
From the results, it could be proposed that for achieving over 90% of the VOC removal, appropriate operation conditions are media moisture content = 52-65%, media pH = 7-8, influent VOC concentration = 150-450 mg/Am3, EBRT = 0.75 min, and L to the whole media = 11-34 g/m3.h.
VI
目錄
謝誌…………………………………………………………. I
中文摘要……………………………………………………. II
英文摘要……………………………………………………. IV
目錄…………………………………………………….…… VI
表目錄…………………………………………………………. IX
圖目錄……………………………………………………….... XI
第一章前言
1.1揮發性有機物(VOCs)之來源與危害.…….……. 1-1
1.2研究目的與內容…………………….……. 1-2
第二章文獻回顧
2.1揮發性有機物(VOCs)處理技術.……….…… 2-1
2.2生物濾床之濾料研究……..………………. 2-1
2.3生物濾床法之相關文獻……………………. 2-7
2.3.1 合板業排氣VOCs 處理……………………. 2-7
2.3.2 塗料乾燥製程VOCs 的控制………..……… 2-8
2.3.3 鑄造廠高濃度乙醇之去除…………………. 2-9
2.3.4 汽車鑄件廠VOCs 及氣味…………………. 2-10
2.3.5 表面塗裝工廠高濃度、低流量VOCs 排氣處理2-11
2.3.6 Flexographic 印刷VOCs……………………. 2-12
2.3.7 含二硫化碳排氣處理………………………. 2-13
VII
2.3.8 生物濾床法:二甲基甲醯胺………………… 2-14
2.3.9 生物濾床法:氨及甲胺……………………. 2-14
2.3.10 生物濾床法:丁酮及甲苯,濾料篩選……… 2-15
2.3.11 生物濾床及滴濾塔法:1,3-丁二烯…………. 2-15
2.3.12 生物濾床法:豬舍臭味……………………. 2-16
2.3.13 生物濾床法:堆肥場臭味………………….. 2-16
2.3.14 生物濾床法:生活污水抽水井排氣…………. 2-17
2.3.15 生物濾床法:厭氣消化後生物污泥脫水設施排
氣…………………..…………………….. 2-17
2.3.16 生物濾床法:乙酸丙二醇單甲基醚酯(PGMEA) 2-19
2.317 生物濾床法:異丙醇(IPA) ………………… 2-20
第三章實驗設備、材料及方法
3.1 實驗設備……………………………………... 3-1
3.1.1 生物濾床…………………………………. 3-1
3.1.2 待試氣體供應系統………………………… 3-2
3.1.3 水份及營養鹽供試系統…………………… 3-4
3.2 實驗材料…………………………….………… 3-4
3.3 實驗藥品……………….……………………… 3-7
3.3.1 待試揮發性有機物性質………………….… 3-5
3.3.2 實驗藥品及營養源性質………………….… 3-13
3.4分析方法………………………………………. 3-14
VIII
第四章結果與討論
4.1 第一階段試驗………………………….…… 4-1
4.2 第二階段試驗…………………………….… 4-10
4.3 第三階段試驗………………………….…… 4-20
4.4 第四階段試驗…………………………….… 4-29
4.5 第一至第四階段處理討論……………….… 4-40
4.5.1 pH 對生物濾床去除率之影響….…………..… 4-40
4.5.2 濾床濾料吸附VOCs 與去除率之關係…... 4-41
4.5.3 濾料及濾出水中之總VOC 質量之影響……... 4-42
第五章結論與建議
5.1 結論……………………………………….….. 5-1
5.2 建議…………………………………………… 5-3
參考文獻……………………………………………………... 6-1
附錄A 第一階段試驗數據
附錄B 第二階段試驗數據
附錄C 第三階段試驗數據
附錄D 第四階段試驗數據
IX
表目錄
表2-1 一些生物濾料組成(1/2) ……………………..….…… 2-4
表2-1 一些生物濾料組成(2/2) ………………………...….… 2-5
表2-2 生物濾床法-合板工廠中VOCs 之處理………….… 2-7
表2-3 生物濾床法-塗料印刷廠排氣除臭……………….… 2-8
表2-4 生物濾床法-鑄造廠排氣處理…………………….… 2-9
表2-5 生物濾床法-汽車鑄造工場中VOCs 及氣味去除.… 2-10
表2-6
模場試驗後濾料中各重金屬濃度(Mercedes-Benz
Biofilter) …………………………………………….… 2-11
表2-7
套裝式生物濾床法-表面塗裝工廠排氣中VOCs 之
去除…………………………………………….……… 2-11
表2-8 生物濾床法:印刷排氣處理………………….……… 2-12
表2-9 生物濾床法:厭氣消化後生物污泥脫水設施排氣… 2-18
表3-1 待試氣體系統設備規格………………….…………… 3-3
表3-2 水份及營養鹽供試系統設備規格……….…………… 3-4
表3-3 供試VOCs 基本性質………………….………………. 3-5
表3-4 某TFT-LCD 實廠排氣VOC 特性…….………………. 3-5
表3-5
半導體及光電業排氣揮發性有機物之成分及
濃度…………………………………………….……... 3-6
表3-6 本研究待試排氣VOC配比…………………….……... 3-6
表3-7 待試揮發性有機物性質…………………….…….…... 3-7
表3-8 異丙醇(IPA)之物質安全資料表…………….……..…. 3-8
表3-9 丙酮(Acetone)之物質安全資料表…………….……… 3-9
X
表3-10 雙三甲基矽胺(HMDS)之物質安全資料表…….…….. 3-10
表3-11 丙二醇單甲基醚酯(PGME)之物質安全資料表.…….. 3-11
表3-12 乙酸丙二醇單甲基醚酯(PGMEA)之物質安全資料表3-12
表3-13 實驗藥品及營養源性質…………………….…….…... 3-13
表3-14 分析儀器與型號…………………….…….…... ..….… 3-14
表3-15 GC-FID 操作條件…………………….…….……….... 3-15
表4-1 第一階段進氣VOCs 混合比例計算….…….………... 4-1
表4-2 第一階段濾床操作參數……………….…….………... 4-2
表4-3 第二階段進氣VOCs 混合比例計算….…….………... 4-11
表4-4 第二階段濾床操作參數……………….…….………... 4-11
表4-5 第三段進氣VOCs 混合比例計算….…….………….... 4-20
表4-6 第三階段濾床操作參數……………….…….………... 4-20
表4-7 第二階段進氣VOCs 混合比例計算….…….……….... 4-30
表4-8 第二階段濾床操作參數……………….…….………... 4-30
IV
XI
圖目錄
圖1-1 二氧化氮循環……………………………………….… 1-1
圖1-2 形成光化學煙霧(Smog) ……………………………… 1-2
圖2-1 濾料生物膜代謝機制……………………………….… 2-2
圖2-2 濾料之崩解與結塊………………………………….… 2-6
圖2-3 植種前及操作後之蛇木屑情形…………………….… 2-19
圖3-1 生物濾床系統……………………………………….… 3-1
圖3-2 實驗操作之生物濾床……………………………….… 3-2
圖3-3 待試氣體產生系統………………………………….… 3-3
圖3-4 水份及營養鹽供試系統…………………………….… 3-4
圖4-1 進、出流氣體中IPA 濃度……………………………. 4-2
圖4-2 吸附、吸收於濾料與流出液中之IPA 質量………… 4-3
圖4-3 進、出流氣體中Acetone 濃度………………………. 4-3
圖4-4 吸附、吸收於濾料與流出液中之Acetone 質量……. 4-4
圖4-5 進、出流氣體中HMDS 濃度………………………… 4-4
圖4-6 吸附、吸收於濾料與流出液中之HMDS 質量……… 4-5
圖4-7 進、出流氣體中PGME 濃度………………………… 4-5
圖4-8 吸附、吸收於濾料與流出液中之PGME 質量……… 4-6
圖4-9 進、出流氣體中PGMEA 濃度………………………… 4-6
圖4-10 吸附、吸收於濾料與流出液中之PGMEA 質量……. 4-7
圖4-11 第一階段濾床及廢液之pH 值……………………….. 4-7
圖4-12 第一階段濾床含水率……………………………….… 4-8
圖4-13 濾床壓損之變化…………………………………….… 4-8
圖4-14 4-14 濾床溫度之變化…………………………………. 4-9
圖4-15 進、出流氣體中混合VOCs 濃度……………………… 4-10
XII
圖4-16 吸附、吸收於濾料與流出液中之混合VOCs 質量…… 4-10
圖4-17 進、出流氣體中IPA濃度……………………………… 4-12
圖4-18 吸附、吸收於濾料與流出液中之IPA 質量………… 4-12
圖4-19 進、出流氣體中Acetone 濃度………………………… 4-13
圖4-20 吸附、吸收於濾料與流出液中之Acetone 質量……… 4-13
圖4-21 進、出流氣體中HMDS 濃度………………………… 4-14
圖4-22 吸附、吸收於濾料與流出液中之HMDS 質量……… 4-14
圖4-23 進、出流氣體中PGME 濃度………………………… 4-15
圖4-24 吸附、吸收於濾料與流出液中之PGME 質量……… 4-15
圖4-25 進、出流氣體中PGMEA 濃度………………………. 4-16
圖4-26 吸附、吸收於濾料與流出液中之PGMEA 質量……. 4-16
圖4-27 第二階段濾床及廢液之pH 值……………………….. 4-17
圖4-28 第二階段濾床含水率…………………………………. 4-17
圖4-29 濾床壓損之變化………………………………………. 4-18
圖4-30 濾床溫度之變化………………………………………. 4-18
圖4-31 進、出流氣體中混合VOCs 濃度……………………. 4-19
圖4-32 吸附、吸收於濾料與流出液中之混合VOCs 質量…. 4-19
圖4-33 進、出流氣體中IPA 濃度……………..………………. 4-21
圖4-34 吸附、吸收於濾料與流出液中之IPA 質量………….. 4-22
圖4-35 進、出流氣體中Acetone 濃度………..………………. 4-22
圖4-36 吸附、吸收於濾料與流出液中之Acetone 質量……... 4-23
圖4-37 進、出流氣體中HMDS 濃度………..……………….. 4-23
圖4-38 吸附、吸收於濾料與流出液中之HMDS 質量……….. 4-24
圖4-39 進、出流氣體中PGME 濃度………..………………. 4-24
圖4-40 吸附、吸收於濾料與流出液中之PGME 質量……….. 4-25
圖4-41 進、出流氣體中PGMEA 濃度………..………………. 4-25
XIII
圖4-42 吸附、吸收於濾料與流出液中之PGMEA 質量…….. 4-26
圖4-43 第三階段濾床及廢液之pH 值………..………………. 4-26
圖4-44 第三階段濾床含水率………..……………….….……. 4-27
圖4-45 濾床壓損之變化………..…………..…………………. 4-27
圖4-46 濾床溫度之變化……..……………….……….………. 4-28
圖4-47 進、出流氣體中混合VOCs 濃度………..…………… 4-29
圖4-48 吸附、吸收於濾料與流出液中之混合VOCs 質量…. 4-29
圖4-49 進、出流氣體中IPA 濃度………..………….…….…. 4-31
圖4-50 吸附、吸收於濾料與流出液中之IPA 質量……….… 4-32
圖4-51 進、出流氣體中Acetone 濃度………..………………. 4-32
圖4-52 吸附、吸收於濾料與流出液中之Acetone 質量……… 4-33
圖4-53 進、出流氣體中HMDS 濃度………..………………. 4-33
圖4-54 吸附、吸收於濾料與流出液中之HMDS 質量……… 4-34
圖4-55 進、出流氣體中PGME 濃度………..……………….. 4-34
圖4-56 吸附、吸收於濾料與流出液中之PGME 質量……… 4-35
圖4-57 進、出流氣體中PGMEA 濃度………..………………. 4-36
圖4-58 吸附、吸收於濾料與流出液中之PGMEA 質量……. 4-36
圖4-59 第四階段濾床及廢液之pH 值………..………………. 4-37
圖4-60 第四階段濾床含水率………..…………………..……. 4-37
圖4-61 濾床壓損之變化………..…………………..…………. 4-38
圖4-62 濾床溫度之變化………..………………………..……. 4-38
圖4-63 進、出流氣體中混合VOCs 濃度………..…………… 4-39
圖4-64 吸附、吸收於濾料與流出液中之混合VOCs 質量….. 4-40
圖4-65 pH對生物濾床去除率之影響………………………… 4-40
圖4-66 濾床負荷(Loading 11.44 g/m3.h)時,吸附於濾料之
VOC 質量與氣體中VOC 去除率之關係……………. 4-41
XIV
圖4-67 濾床負荷(Loading 22.8 g/m3.h)時,吸附於濾料之
VOC 質量與氣體中VOC 去除率之關係……………. 4-41
圖4-68
濾床負荷(Loading 34.1 g/m3.h)時,吸附於濾料之
VOC 質量與氣體中VOC 去除率之關係……………. 4-42
圖4-69 生物濾床二次數據期間濾料中與濾出水中總VOC質
量之重量變化(mg)/二次數據期間之總VOC 進流質
量(mg)…………………………………………………. 4-43
1. Ottengraf, S.P.P., (1986), “Exhaust gas purification,” In Biotechnology;
Rehm, H.J.; Reed, G., Eds.; VCH Verlagsgesellsch: Weinheim, Vol. 8,
pp 425-452.
2. Devinny, J. S., Deshusses, M. A., and Webster, T. S., (1999),
“Biofiltration for air pollution control,” Lewis Publishers, USA, 1999.
3. Shareefdeen, Z. and Singh, A. (Eds.)., (2005), “Biotechnology for odor
and air pollution control,” Springer-Verlag, Germany, 2005.
4. 經濟工業局,(2004),「揮發性有機物廢氣減量及處理技術手冊」。
5. Chou, M. S. and Shiu, W. Z., (1997), “Bioconversion of Methylamine in
biofilters,” J. Air & Waste Manage. Assoc., 47, 58-65.
6. Chou, M. S. and Cheng, W. S., (1997), “Screening of Biofiltering
Material for VOC Treatmant,” J. Air & Waste Manage. Assoc., 47,
674-681.
7. 台灣卜蜂公司,(1992),南投市。
8. 沈克鵬、徐樹剛、張昭君、楊慶熙,(1999),「生物濾床處理壓克力
樹脂製程臭味氣體可行性評估」,第十六屆空氣污染防制技術研討會
論文集pp.271-275。
9. Wu, B. G., Lerous, C. A,and Brzezinski, R., (1999), “A High
Performance Biofilter for VOC Emission Control,” J. Air and Waste
Manage. Assoc. ,49, 185-192.
10. Chou, M. S. and Wu, S. L., (1998), “Bioconversion of
Dimethylformamide in Biofilters,” J. Air and Waste Manage. Assoc. , 48,
306-316.
11. Chou, M. S. and Lu, S. L., (1998), “Treatment of 1,3-Butadiene in An Air
Stream by A Biotrickling Filter and A Biofilter,” J. Air and Waste
Manage. Assoc., 48, 711-720.
12. 黃柏仁、張筱瑜,(2000),「以密閉式生物濾床處理油漆用樹脂製造
廢水場排氣」,某公司委辦研究計畫報告,中華民國八十九年九月。
13. Mann, D. D, DeBruyn, J. C., and Chang, Q., (2002), “Design and
operation of an open biofilter for treatment of odour from swine barns
during sub-zero ambient temperatures,” Can. Biosyst. Eng., 44, pp.
6.21-6.26.
14. Devinny, J. S., Deshusses, M. A., and Webster, T. S., (1999),
“Biofiltration for Air Pollution Control,” Lewis Publishers, USA, 1999.
15. Yang, A. Y. and Togna, P., (1994), “Oxidative Destruction of Carbon
Disulfide Vapors Using Biofiltration,” Proc. 87th Annual Meeting &
Exhibition, Air and Waste Manage. Assoc., Cincinnati, Ohio, June19-24.
16. 彭筱婷,(2005),「以生物濾床處理排氣中乙酸甲氧基異丙酯(PGMEA)
之操作性能研究」,國立中山大學環境工程研究所碩士論文。
17. 張豐堂、林玉旨、白寶實、白矄綾、鄭石治,(2005),「次世代TFT-LCD
產業揮發性有機廢氣楚理設備之最佳化」,工業污染防治,第94 期,
第33-50 頁。
18. 行政院勞工委員會勞工安全衛生研究所「物質安全資料表」。
19. 莊子儀、劉帝彤、林煌智、劉兆仁,(2005),「VOCs 有機廢氣處理
系統的運轉參數與節能之研究」,工業污染防治,第96 期,第55-69
頁。
20. 江欽文,(2005),「以生物濾床處理排氣中異丙醇(IPA)之操作性能研
究」,國立中山大學環境工程研究所碩士論文。
21. Yonghui, L., Xie, Q., Yazhi, Z., Shuo, C. and Huimin, Z., (2005),
“Removal of ternary VOCs in air streams at high loads using a
compost-based biofilter,” J. Biochemical Engineering, vol.23, pp.85-95.
22. Mario, Z., Carmela, G., Danilo, D., Sara, B. and Attilio C., (2005),
“Laboratory-scale experiments with a powdered compost biofilter
treating benzene-polluted air, Process Biochemistry,” vol.40,
pp.2035-2043.
23. Yonghui, L., Xie, Q., Yumei, S., Jingwen, C., Daming, X. and Jong, S. C.,
(2002), “Simultaneous removeal of ethyl acetate and tolune in air streams
using compost-based biofilters,” J. Hazardous Material vol.B95,
pp.199-213.
24. J. Streese, M. Schlegelmich, K. Heining, and R. Stegmann., (2005), “A
macrokinetic model for dimensioning of biofilters for VOC and odour
treatment,” Waste Management vol.25, pp.965-974.
25. Martha, J., Miller, D. Grant Allen., (2004), “Transport of hydrophobic
pollutants through biofilms in biofilters,” Chemical Engineering Science
vol.59, pp.3515-3525.
26. S. M. Zarook, A. A. Shaikh, Z. Ansar and C. Baltzis., (1997),
“Biofiltration of volatile organic compound(VOC) mixtures under
transient conditions,” Chemical Engineering Science vol.52,
pp.4135-4142.
27. Madjid, M., D. Grant Allen., (2000), “Biofiltration of mixtures of
hydrophilic and hydrophobic volatile organic compounds,” Chemical
Engineering Science vol.55, pp.1545-1558.
28. Giorgia, S., Claudio, P., M. Daria Fumi., Roberto, M. and Marco D. F.,
(2003), “VOCs removal from waste gases: gas-phase bioreactor for the
abatement of hexane by Aspergillus niger,” Chemical Engineering
Science vol.58, pp.739-746.
29. Oscar J. Prado, maris C. Veiga and Christian K., (2005), “Treatment of
gas-phase methanol in conventional biofilters packed with lava rock,”
Water Research vol.39, pp.2385-2393.
30. Marie-Caroline, D., Louise, B., Nathalie, B., Sebastien, R., Sophie B.,
Ryszard B., Jack L. K. and Michele H., (2002), “Biofiltration of air
contaminated with toluene on a compost-based bed,” Advances in
Environmental Research vol.6, pp.239-254.
31. 劉永慧、孫玉梅、全燮、陳景文、薛大明、張曉飛,(2002),「生
物過濾床處理甲苯和乙酸乙酯混合廢氣」,化工學報,第53 期,第
853-856 頁。
32. 王寶慶、馬廣大、陳劍寧,(2003),「揮發性有機廢氣淨化技術研究
發展」,環境污染治理技術與設備,第4 期,第47-51 頁。
6-4
33. Daekeun Klm., Zhangll Gal. and George A. Sorial., (2005), “Evaluation
of Trickle-Bed Air Biofilter Performance under Periodic Stressed
Operating Conditions as a Function of Styrene Loading,” J. Air & Waste
Manage. Assoc. 55, pp.200-209.
34. William M. Moe. and Bing Qi., (2005), “Biofilter Treatment of Volatile
Organic Compound Emissions from Reformulated Paint: Complex
Mixtures, Intermittent Operation, and Startup,” J. Air & Waste Manage.
Assoc. 55, pp.950-960.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top