跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2025/01/14 04:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:梁書豪
研究生(外文):Shu-hao Liang
論文名稱:以Fenton-like氧化處理受燃料油污染之土壤
論文名稱(外文):Application of Fenton-like technique to remediate fuel-oilcontaminated soils
指導教授:高志明高志明引用關係
指導教授(外文):Chih-ming Kao
學位類別:碩士
校院名稱:國立中山大學
系所名稱:環境工程研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:106
中文關鍵詞:土壤整治Fenton-like 氧化燃料油
外文關鍵詞:Fenton-like oxidationcontaminated soilfuel oil
相關次數:
  • 被引用被引用:29
  • 點閱點閱:785
  • 評分評分:
  • 下載下載:198
  • 收藏至我的研究室書目清單書目收藏:1
由於開放油品進口及加油站民營化,使得油品在儲存及運送活動愈趨頻繁,而加油站的地下輸油管線和地下儲油槽會因埋藏的年代久遠而使滲漏的機會增大。由於燃料油污染土壤及地下水之整治困難度高於受汽油及柴油污染之地下環境,故本研究希望應用Fenton-like氧化技術處理難移除/分解之燃料油,並評估鐵氧礦物、磷酸二氫鉀、界面活性劑以及土壤有機質對Fenton-like處理效率之影響。
研究結果顯示,當燃料油濃度為3%(w/w)時,總石油碳氫化合物(total petroleum hydrocarbons, TPH)之分解率依序為3% H2O2 (84.8%)>0.05% H2O2 (56.7%);燃料油濃度為0.5%(w/w)時,TPH分解率依序為6% H2O2 (69.1%)>3% H2O2 (54.0%) >0.05% H2O2 (32.6%)。氧化結果顯示,單純過氧化氫對TPH之氧化能力不如Fenton-like處理程序。而在界面活性劑干擾下,6% H2O2處理0.5 %(w/w)之燃料油污染土時,可容許之界面活性劑濃度為0.7%(w/w)以下。在添加磷酸二氫鉀影響方面,磷酸二氫鉀會抑制水中的亞鐵或鐵氧礦物催化過氧化氫,造成污染物去除效率減低,當添加2.2 mM之KH2PO4時,雖可提高H2O2之穩定性,但TPH分解效率較差。在Fenton-like反應中,pH趨近於6至7,鐵氧礦物溶解量會較少,氫氧自由基之產生大多由鐵氧礦物的固體表面催化所產生。Fenton-like氧化燃料油之副產物判定推測發現不論以3% H2O2處理3%(w/w)燃料油或 6% H2O2處理0.5%(w/w)燃料油,皆有酸類支鏈產生或產生酸類化合物,此結果表示當Fenton或Fenton-like氧化能力不足以破壞化合物結構時,僅有支鏈破壞重組的情況發生,因此產生化合物支鏈改變,但分子量無明顯變化的情況發生。
Soil and groundwater at many existing and former industrial areas and disposal sites is contaminated by petroleum hydrocarbons that were released into the environment. Among those petroleum hydrocarbons, fuel oil is more difficult to treat compared to gasoline and diesel fuel due to its characteristics of low volatility, low biodegradability, and low mobility. Thus, a combination of several different treatment technologies is required to remediate fuel oil contaminated soil or groundwater. The objective of this study was to assess the potential of applying Fenton-like oxidation process to remediate fuel-oil contaminated soils. The following tasks were performed in this study: (1) determination of the optimal oxidation conditions, (2) evaluation of the efficiency of chemical by Fenton-like process after the pretreatment of surfactant flushing, and (3) evaluation of the stability of H2O2 by the addition of potassium dihydrogen phosphate (KH2PO4). Total petroleum hydrocarbons (TPH) in soil were analyzed to determine the effectiveness of the oxidation treatment.
Results from this study show that the highest TPH removal efficiency (84.8%) was obtained for soils containing 3%(w/w) of fuel oil when 3% of H2O2 was applied followed by 0.05% of H2O2 with 56.7% of TPH removal. Results also show that approximately 69.1% of TPH removal was detected with soils containing 5%(w/w) of fuel oil when 6% of H2O2 was applied followed by 3% of H2O2 with 56.7% of TPH removal and 0.05% of H2O2 with 32.6% of TPH removal. Results also indicate that Fenton-like process has much higher oxidation efficiency than using H2O2 alone. The oxidation efficiency was significantly affected when the contaminated soils were pretreated with surfactant. Results reveal that the maximum allowable surfactant addition was approximately 0.7% (w/w) for soils containing 0.5% (w/w) of fuel oil when 6% of H2O2 was applied. Addition of 2.2 mM of potassium dihydrogen phosphate influence could increase the stability of H2O2, but caused the decrease in the efficiency of TPH removal.
During the Fenton-like reaction, pH values were close to 6 to 7. The neutral to slightly acidic conditions caused the decreased dissolution rate of iron minerals. This would also cause the decreased production of hydroxyl radicals from the surface of iron minerals. Results from the byproduct analysis show that the oxidation potential of Fenton-like process is not strong enough to completely destroy the fuel oil to non-toxic end products. The oxidation process produced byproducts containing carboxyl groups with molecular weights similar to their parent compounds.
目 錄
謝 誌 I
摘 要 II
Abstract III
目 錄 IV
表目錄 VI
圖目錄 VII
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的 2
第二章 文獻回顧 3
2.1 燃料油基本介紹 3
2.2 土壤及地下水油品污染概況 5
2.3 土壤及地下水整治技術發展趨勢 6
2.4 現地化學氧化技術介紹 8
2.5 Fenton-like氧化法技術介紹 12
2.5.1 Fenton 及Fenton-like氧化原理及機制介紹 12
2.5.2 Fenton-like氧化法之優缺點 16
2.5.3 Fenton-like氧化法之影響因子 17
2.5.4 Fenton-like氧化後之副產物 27
2.5.5 Fenton-like氧化反應之•OH生成量推估 29
第三章 材料及方法 31
3.1 實驗材料 31
3.1.1 實驗藥品 31
3.1.2 實驗器材 32
3.2 實驗方法 33
3.2.1土壤基本性質分析 33
3.2.2 人工製備燃料油污染土 35
3.2.3 燃料油污染土之飽和吸附濃度推估 36
3.2.4研究流程 37
3.2.3 Fenton-like氧化試驗 39
3.2.5 燃料油之總石油碳氫化合物分析方法與步驟 42
3.2.6 燃料油氧化後副產物之評估 43
第四章 結果與討論 45
4.1 土壤基本性質分析 45
4.2 燃料油污染土之飽和吸附濃度推估 47
4.3 不同操作條件下Fenton-like氧化燃料油之影響 49
4.3.1 不同過氧化氫濃度 49
4.3.2 去有機質之影響 54
4.3.3 去有機質及去鐵氧礦物之影響 57
4.3.4 添加磷酸氫二鉀之影響 60
4.3.5 界面活性劑濃度之影響 62
4.4 Fenton-like氧化燃料油期間溫度之變化 64
4.5 燃料油氧化反應速率分析 67
4.6 鐵氧化物催化效應之型態推估 70
4.7 燃料油降解趨勢 72
4.8 燃料油氧化後副產物評估 75
第五章 結 論 82
第六章 建 議 84
參考文獻 86
工業技術研究院環境與安全衛生技術發展中心,(2003)“土壤中總石油碳氫化合物(TPHs)檢測之研究”,EPA-92-E3S4-02-01。
王一雄,(1997),土壤環境污染與農藥,國立編譯館印行。
王一雄、陳尊賢、李達遠,(1995),土壤污染學,國立空中大學。
王明光,(2000),環境土壤化學,五南圖書出版公司。
申永順、吳嘉偉,(2004)“結合化學置換法及Fenton-like程序處理含重金屬及有機物混合溶液之反應行為研究” 第二十九屆廢水處理技術研討會論文集,B-03-12。
金相燦,(1998),環境毒性有機物污染化學,淑馨出版社。
亭儀,(1980)“燃料油之特性及其熱值之估算--簡介ASTM燃料油規範”,石油季刊,第16期,第2卷,第98-104頁。
馬英石、謝育民,(2005)“氧化還原電位作為廢水超音波處理效率指標之可行性研究”,親民學報,第11期,第167-175頁。
高思懷、潘鐘、張芳淑,(1994)“Fenton反應中無機鹽之影響” 第19屆廢水處理技術研討會論文集,台北,第6-122-6-126頁。
張明琴、謝文彬、王敏昭、郭雅鈴,(2003)“Fenton試劑處理含多環芳香烴化合物污染土壤最佳化操作條件之研究”,第八屆土壤及地下水污染整治研討會論文集,第203-212頁。
張芳淑、高思懷、吳嘉麗,(1995)“pH值在Fenton系統中所扮演的角色探討” 第20屆廢水處理技術研討會論文集,第6-61-6-67頁。
張秋萍、陳重男、盧明俊,(2003)“利用過氧化氫與Fenton法處理彩色照相沖洗廢液”,健康管理學刊,第一卷,第二期,第195-205頁。
張寶旗,(1991)“Fenton法對垃圾滲出水之混凝氧化機制之探討”,淡江大學水資源及環境工程研究所碩士論文。
蔡在唐、梁書豪、葉琮裕、高志明,(2006)“利用整治列車概念處理受燃料油污染之土壤”,台灣土壤及地下水協會簡訊,第18期, 第3-11頁。
郭魁士,(1989),土壤實驗,中國書局。
游非庸、黃媛禎、黃惠蓉,(2005)“磷酸對Fenton程序脫色的影響”,蘭陽學報,第四期,第7-14頁。
楊萬發,(1999),水及廢水處理化學,茂昌圖書有限公司。
經濟部工業局,(2003),工廠土壤及地下水污染整治技術手冊。
經濟部能源局,(2004),http://www.moeaboe.gov.tw/16/ECW_16.asp。
劉志皇、馬英石、林志高,(1998)“以超音波/過氧化氫法處理時化廢水之可行性研究”,工業污染防治,第66期,第23-40頁。
盧至人,(1998),地下水的污染整治,國立編譯館。
盧明俊、陳重男、陳世哲,(1998)“探討土壤中針鐵礦催化過氧化氫分解氯酚化合物”,二十三屆廢水處理技術研討會。
盧明俊、陳重男、黃旭輝,(1998)“探討土壤中針鐵礦催化過氧化氫分解2-氯酚之反應”,二十三屆廢水處理技術研討會。
盧明俊、廖志祥、林健榮、黃吟燕、鄭雅勻,(2001)“陰離子對Fenton程序去除苯胺之影響”,嘉南學報,第27期,第29-36頁。
蕭興仁,(2002),應用化學,國立交通大學出版社。
Adams, G. E. and Dorfman, L. M. (1973) “Reactivity of the Hydroxyl Radical in Aqueous Solutions,” Rep. No. NSRDS-NBS-46, National Bureau of Standards, Washington, D.C.
Baciocchi R., Boni M. R. and Aprile L. D. (2004) “Application of H2O2 Lifetime as an Indicator of TCE Fenton-like Oxidation in Soil”, Journal of Hazardous Materials, B107, pp.97-102.
Baciocchi R., Boni M. R., Aprile L. D., (2003), “Hydrogen Peroxide Lifetime as an Indicator of the Efficiency of 3-chlorophenol Fenton’s and Fenton-like Oxidation in Soil”, Journal of Hazardous Materials, B96, pp.305-329.
Barton L. L. and Hemming, B. C. (1993) “Iron Chelation in Plants and Soil Microorganisms”, New York: Academic Press Inc.
Bier, E. L., Singh, J., Li, Z. M., Comfort S. D. and Shea, P. J. (1999) “Remediating Hexahydro- 1,3,5- trinitro-1,2,5- trazine- contamenated Water and Soil by Fenton Oxidation”, Environmental Toxicology and Cemistry, 18(6), pp.1078-1084.
Bishop D. F., Stern G., Fleischman M. and Marshall L. S. (1968) “Hydrogen Peroxide Catalytic Oxidation of Refractory Organics in Municipal Waste Waters”, I & EC Process Designand Development, Vol.7, No.1, pp.110-117.
Bohn, H. L., McNeal B. L. and O’connor, G. A. (1985) Soil Chemistry, pp.349-383.
Borden R. C. and Kao C. M. (1992) “Evaluation of Groundwater Extraction for Remediation of Petroleum Contaminated Aquifers”, Water Environment Research., 64, pp.28-36.
Bremner, D. H., Burgess, A. E., Houllemare, D. and Namkung, K. C. (2006) “Phenol Degradation Using Hydroxyl Redicals Generated from zero-valent Iron and Hydrogen Peroxide”, Applied Catalysis B: Environmental, 63, pp.15-19.
Brown , R. A., Robinson, D., Skladany, G. and Loeper, J. (2003) “Response to Naturally Occurring Organic Material : Permanganate versus Persulfate”, Proceedings of ConSoil, 2003-8th International FZK/TNO Conference on Contaminated Soil, 1686-1691, May 12-16, Gent, Belgium.
Brown, R. A., Robinson, D., Skladany, G. and Loeper, J. (2003) “Response to Naturally Occurring Organic Material: Permanganate versus Persulfate”, Proceeding of Consoil, 2003-8th Interational FZK/TNO Conference on Contaminated Soil, pp.1692-1698.
Chang, C. N., Hsu, C. F. Chao, A. C. and Lin J.G. (1995) “Characteristics of the Disinfection by Products(DBPs) and Process Control Techniques of the Disinfextion Processing Pre-ozonation and Post-chlorination”, Water Supply, 13, pp.146-151.
Chen, P. and Pignatello, J. (1997) “Role of Quinone Intermediates as Electro Shuttles in Fenton and Photoassisted Fenton Oxidations of Aromatic Compounds”, Environ. Sci. Technol., 31, pp.2399-2406.
Chen, P. H. and Watts, R. J. (2000) “Determination of Rates of Hydroxyl Radical Generation in Mineral-Catalyzed Fenton-like Oxidation”, Journal of the Chinese Institute of Environmental Engineering, 10(3), pp.201-208.
Chiou, C. T. and Shoup, T. D. (1985) “Soil Sorption of Organic Vapors and Effects of Humidity on Sorptive Mechanism and Capacity”, Environ. Sci. Technol., 19, pp.1196-1200.
Chiou, C. T. and Shoup, T. D. (1994) “Effects of Polar and Nonpolar Groups on the Solubility of Organic Compounds in Soil Organic Matter”, Environ. Sci. Technol., 28, pp.1139-1144.
Chiou, C. T., Kile D. E. and Malcolm R. L. (1988) “Sorption of Vapors and Some Organic Liquids on Soil Humic Acid and Its Relation to Partitioning of Organic Compounds in Soil Organic Matter”, Environ. Sci. Technol., 22, pp.298-303.
Chou, S. S. and Huang, C. P. (1999) “Experimental Design for the Treatment of a Dyeing/Finishing Wastewater by FBR-Fenton Method”, Journal of the Chinese Institute of Environmental Engineering, 9(4), pp.241-250.
Domingues, M. R. M., Domingues, P., Reis, A., Fonseca, C., Amado, F. M. L. and Ferrer-Correia, A. J. V. (2003) “Identification of Oxidation Products and Free Radicals of Tryptophan by Mass Spectrometry”, J. Am. Soc. Mass Spectrom, 14, pp.406-416.
Doong, R. A. and Wu, S. C. (1993) “The effect of Oxidation-reduction Potential on the Diotransfernations of Chlorined Hydrocarbons”, Wat. Sci. Tech., 26, pp.35-39.
Fenton, H. J. H. (1894) “Oxidation of Tartaric Acid in Presence of Iron”, Journal of Chemical Society, 65, pp.889-910.
Ferguson, S. H., Woinarski, A. Z., Snape, I., Morris, C. E. and Revill, A. T. (2004) “A Field of in Situ Chemical Oxidation to Remediate Long-term Diesel Contaminated Antarctic Soil”, Cold Regions Science and Technology, 40, pp.47-60.
Gallard, H. and De, L. J. (2000) “Kinetic Modeling of Fe(III)/H2O2 Oxidation Reactions in Dilute Aqueous Solution Using Atrazine as a Model Organic Compound”, Wat. Res., 34(12), pp.3107-3116.
Gates, D. D. and Siegrist, R. L. (1995) “ In Situ Chemical Oxidation of Trichloroethylene Using Hydrogen Peroxide”, J. Environ. Eng., 121, pp.639-644.
Haber, F. and Weiss, J. (1934) “The Catalytic Decomposition of Hydrogen Peroxideby Iron Salts”, Proc. R. Soc., 147, pp.332–351.
Hermosin, M. C. and Cornejo, J. (1993) “Binding Mechanism of 2,4-dichlorophenoxyacetic Acid by Organoclays”, J. Environ. Qual., 22, pp.325–331.
Hsueh, C. L., Huang, Y. H., Wang, C. C. and Chen, C. Y. (2006) “Photoassisted Fenton Degradation of Nonbiodegradable Azo-dye (Reactive Black 5) Over a Novel Supported Iron Oxide Catalyst at Neutral pH”, Journal of Molecular Catalysis A: Chemical, 254, pp.78-86.
Huang, C. P., Dong, C. D. and Tang, Z. M. (1995) “Advanced Chemical Oxidation: It’s Present Role and Potential Future in Hazardous Waste Treatment”, Chemical Engineering Progress, December Issue, pp.62-66.
Huang, W. and Young, T. M., Schlautman, M. A. and Weber, W. J. Jr. (1997) “A Distributed Reactivity Model for Sorption by Soils and Sediments. 9. General Isotherm Nonlinearity and Applicability of the Dual Reactive Domain Model”, Environ. Sci. Technol., 31(6), pp.1703-1710.
Huling, S. G., Jones, P. K., Ela, W. P. and Arnold, R. G. (2005) “Fenton-driven chemical regeneration of M TBE-spent GAC”, Water Research, 39(10), pp.2145-2153.
International Technology and Regulatory Cooperation (ITRC) (2002). In-Situ Chemical Oxidation, ITRC Training Course for SRP, October, Http://www.itrcweb.org/.
International Technology and Regulatory Cooperation (ITRC) (2005) Technical and Regulatory Guidance for In-Situ Chemical Oxidation of Contaminated Soil and Groundwater. 2nd. Ed., Http://www.itrcweb.org/
Kakarla, K. C., Watts, R. J., Member A. and ASCE (1997) “Depth of Fenton-like Oxidation in Remediation of Surface Soil”, Journal of Environmental Engineering, 123(1), pp.11-17.
Kang, N. and Hua, I. (2005) “Enhanced Chemical Oxidation of Aromatic Hydrocarbons in Soil Systems”, Chemosphere, 61, pp.909-922.
Kang, N., Lee, D. S. and Yoon, J. (2002) “Kinetic Modeling of Fenton Oxidation of Phenol and Monochlorophenols”, Chemosphere, 47(9), pp.915-924.
Kao, C. M. and Wu, M. J. (2000) “Enhanced TCDD degradation by Fenton’s reagent preoxidation”, Journal of Hazardous Materials, B74, pp.197-211.
Kao, C. M., Long, S. C., Lutes, C. and Dasinger, A. (1996) “Remediation of Dioxin Contaminated Soil Enhanced by Chemical Oxidation Pretreatment, in: Proc. Of the 11th Annual Conference on Contaminated Soil, Iniv. Of Massachusetts at Amherst, MA, USA.
Kelly, K. L., Marleym, M. C. and Sperry, K. L. (2002) “In-situ Chemical Oxidation on MTBE”, Proceedings of 2002 Joint CSCE/EWRI of ASCE International Conference on Environmental Engineering, July 21-24, Niagara Falls, Ontario, Canada.
Kong, S. H., Watts, R. J. and Choi, J. H. (1998) “Treatment of Petroleum-contaminated Soils Using Iron Mineral Catalyzed Hydrogen Peroxide”, Chemosphere, 37(8), pp.1473-1482.
Lee, S. H. and Carberry, J. B. (1992) “Biodegration of PCP Enhanced by Chemical Oxidation Pretreatment”, Water Environ. Res., 64, pp.682-690.
Leboeuf, E. J. and Weber, W. J. Jr. (1997) “A Distributed Reactivity Model for Sorption by Soils and Sediments. 8. Sorbet Organic Domains: Discovery of a Humic Acid Glass Transition and an Argument fur a Polymer-Based Model”, Environ. Sci. Technol., 31(6), pp.1697-1702.
Lin, S. H., Lin, C.M. and Leu, H. G. (1999) “Operating Characteristics and Kinetic Studies of Surfactant Wastewater Treatment by Fenton Oxidation,” Wat. Res., 33(7), pp.1735-1741.
Lin, S. S. and Gurol, M. D. (1998) “Catalytic Decomposition of Hydrogen Mecanism, and Implications”, Environ. Sci. Technol., 32, pp.1417-1423.
Lindsey, M. E. and Tarr, M. A. (2000) “Quantitation of Hydroxyl Radical During Fenton Oxidation Following a Single Addition of Iron and Peroxide”, Chemosphere, 41, pp.409-417.
Lu, M. C., Chang, Y. F., Chen, I. M. and Huang, Y. Y. (2005)“Effect of Chloride Ions on the Oxidation of Aniline by Fenton’s Reagent”, Journal of Environmental Mannagement, 75, pp.177-182.
Lu, M. C., Chen, J. N. and Chang, C. P. (1997) “Effect of Inorganic Ions on the Oxidation of Dichlorvos Insecticide with Fenton’s Reagent”, Chemosphere., 35(10), pp.2285-2293.
Ma, Y. S., Huang, S. T.and Lin, J. G. (2000) “Application of Fenton Process on the Decomposition of 4-Nitrophenol”, Journal of Chinese Institute of Environmental Engineering, 10(3), pp.185-191.
Ma, Y. S., Huang, S. T. and Lin J. G. (2000) “Application of Fenton Process on the Decomposition of 4-Nitrophenol”, Journal of the Chinese Institute of Environmental Engneering, 10(3), pp.185-191.
Martin L. R., Easton M. P., Foster J . W .and Hill M. W. (1989) “Oxidation of Hydromethanesulfonic Acid by Fenton’s Rea-gent”, At-mospheric Environment, 23(3), pp.563-568.
Masschelein, W., Denis, M. and Ledent, R. (1997) “Spectrophotometric Determination of Residual Hydrogen Peroxide”, Water Sewage Works, August Issue, pp.69-72.
Mecozzi R., Palma L. D. and Merli C. (2006) “Experimental In-situ Chemical Peroxidation of Atrazine in Contaminated Soil”, Chemosphere, 62, pp.1481-1489.
Moon, D. K., Mauyama, T., Osakada, K. and Yamamoto, T. (1991) “Chemical Oxidation of Polyanilime by Radical Generating Reagents, O2, H2O2 FeCl3 Catalyst, and Dibenzoyl Peroxide,” Chemistry Letters, pp.1633-1636.
Nyer, E. K., (1996) “In Situ Treatment Technology”, Geraghty & Miller Environmental Science and Engineering Series, Lewis Pub.
Pavlostathls, S. G. and Mathavan, G. N. (1992) “Desorption Kinetics of Selected Volatile Organic Compounds from Field Contaminated Soil” , Environ. Sci. Technol., 26, pp.532-538.
Philip, J. R., (1998) “Full and Boundary-Layer Solutions of the Steady Air Sparging Problem”, Jounnal of Contaminant Hydrology, 33, Iss 3-4, pp.337-345.
Ravikumar, J. X. and Gurol, M. D. (1994) “Chemical Oxidation of Chlorinated Organics by Hydrogen Peroxide in the Presence of Sand”, Environ. Sci. & Technol., 28(3), pp.394-400.
Rugge, C. D., Ahlert, R. C. and O’Connor, O. A. (1993) “Development of Bacterial Cultures Which can Metabolize Structural Analogs of Dioxin”, Environ. Progress, 12, pp.114-122.
Rutherford, D. W. and Chiou, C. T. (1992) “Effect of Water Saturation in soil Organic Matter on the Partition of Organic Compounds”, Environ. Sci. Technol., 26, pp.964-970.
Rylander, P. N.(1967) Catalytic Hydrogenat.
Schnarr, M., Truax, C., Farquhar, G., Hood, E., Gonullu, T. and Stickney, B. (1998) “Laboratory and Controlled Field Experiments Using Potassium Permanganate to Remediate Trichloroethylene and Perchloroethylene DNAPLs in Porous Media,” J. Contam. Hydrol. 29, pp.205-224.
Schwarzenbach, R. P., Gschwend, P. M. and Imboden, D. M. (1993) Environmental Organic Chemistry, Wiley-Interscience, New York.
Sedlak, D. L. and Andren, A. W. (1991) “Oxidation of Chlorobenzene with Fenton’s Reagent”, Environment Science and Technology, 25, pp.777-782.
Seigrist, R. L., Urynowicz, M. A., West, O. R., Crimi, M. L. and Lowe, K. S. (2001) “Principle and Practices of In Situ Chemical Oxidation Using Permanganate”, Battelle Press.
Spencer, M. S., Schmeltzer, J. S. and Kreamer, D. K. (1996) “Sorption of Benzene and Trichloroethylene (TCE) on a Soil: Effects of Moisture and Organic Matter”, Chemosphere, 33, pp.961-980.
Sprah, G. and Harms, S. (1995) “Influence of Some Groundwater and Surface Waters Constituents on the Degradation of 4-Chlorophenol by the Fenton Reaction”, Chemosphere, 30(1), pp.9-20.
Stolpe, N. B., McCallister, D. L. Shea, P. J. Lewis, D. T. and Dam, R. (1993) “Mobility of Aniline, Benzoic Acid, and Toluene in Four Soils and Correlation with Soil Properties”, Environmental Pollution, 81, pp.287-295.
Stumm,W. (1992) “Chemistry of the Solid-Water Interface,” John Wiley & Sons.Inc.
Torrades, F., Pérez, M., Mansilla, H. D. and Peral, J. (2003) “Experimental Design of Fenton and photo-Fenton Reactions for the Treatment of Cellulose Bleaching Effluents”, Chemosphere, 53, pp.1211-1220.
Tyre, B. W., Watts, R. J. and Miller, G. C. (1991) “Treatment of Four Biorefractory Contaminants in Soils Using Catalyzed Hydrogen Peroxide”, J. Environ. Qual., 20, pp.832-838.
Walling, C. and Goose, A. (1973) “Mechanism of the Ferric Ion Catalyzed Decomposition of Hydrogen Peroxide Effect of Organic Substrates”, J. American Chem. Soc., 95, pp.2987-2991.
Wareham, D. G., Hall, K. J. and Mavinic, D. S. (1993) “Real-time Control of Aerobic-Anoxic Sludge Digestion Using ORP”, J. of Environmental Engineering, 119, pp.120-136.
Watts R. J. and Dilly S. E. (1996) “Evaluation of Iron Catalysis for the Fenton-like Remediation of Diesel-contaminated Soils”, Journal of Hazardous Materials, 51, pp.209-224.
Watts, R. J., Foget, M. K., Kong S. H. and Teel, A. L. (1999) “Hydrogen Peroxide Decomposition in Model Subsurface System”, Journal of Hazardous Materials, B69, pp.229-243.
Watts, R. J., Michael, K. F., Kong, S. H. and Amy, L. T. (2000) “A Foundation for the Risk-Based Treatment of Gasoline-Contaminated Soils Using Modified Fenton’s Reaction”, Journal of Hazardous Materials, 76(2), pp.73-89.
Watts, R. J., Udell, M. D. and Rauch, D. A. (1990) “Treatment of pentachlorophenol Contaminated Soil Using Fenton’s reagent”, Hazardous Waste and Hazardous, 7, pp. 335.
Watts, R. J., Udell, M. D. and Rauch, P. A. (1990) “Treatment of Pentachlorophenol Contaminated Soil Using Fenton’s Reagent”, Hazardous Waste & Hazardous Materials, 7, pp.335-345.
Wilson, D. J. and Clarke, N. A. (1994) “Hazardous Waste Site Soil Remediation,” Marcel Dekker, Inc., New York.
Yan, Y. E. and Schwartz, F. W. (1999) “Oxidative Degradation and Kinetics of Chlorinated Ethylenes by Potassium Permanganate”, J. Contam. Hydrol., 37, pp.343-365.
Yeh, C. K., Kao, Y. A. and Cheng, C. P. (2002) “Oxidation of Chlorophenols in Soil at Natural pH by Catalyzed Hydrogen Peroxide: The Effect of Soil Organic Matter”, Chemosphere, 46, pp.67-73.
Yin, Y. and Allen, H. E. (1999) “In Situ Chemical Treatment, Technology Evaluation Report”, Ground-Water Remediation Technologies Analysis Center, Pittsburgh, PA, USA.
Yu, G., Zhu, W. P. and Yang, Z. H. (1998) “Pretreatment and Biodegradability Enhancement of DSD Acid Manufacturing Wastewater”, Chemophere, 37(3), pp.487-494.
Zhang, Y. and Miller, R. M. (1994) “Effect of a Pseudomonas Rhamnolipid Biosurfactant on Cell Hydrophobicity and Biodegradation of Octadecane”, Applied and Environmental Microbiology. June, pp.2101-2106.
Zhaohui Li. (2004) “Surfactant-enhanced Oxidation of Trichloroethylene by Permanganate-proof of Concept”, Chemosphere, 54, pp.419-423.
Zinder, B., Furrer, G. and Stumm,W. (1986) “The Coordination Chemistry of Weathering: II. Dissolution of Fe(III) Oxides”, Geochimica et Cosmochimica Acta, 50, pp.1861-1869.
Zoh, K. D. and Stenstrom, M. K. (1999) “Advanced Oxidation of RDX and HMX Wates Using Fenton Reagents”, Annu. Conf. Expo., 72nk, pp.2732-2747.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top