跳到主要內容

臺灣博碩士論文加值系統

(44.192.49.72) GMT+8:2024/09/17 20:15
Font Size: Enlarge Font   Word-level reduced   Reset  
Back to format1 :::

Browse Content

Author my cdr record
 
twitterline
Author:陳信瑜
Author (Eng.):Hsin-Yu Chen
Title:極淺海環境中水聲之傳播:儀器測試與現場實測資料分析
Title (Eng.):Acoustic Wave Propagation in a Very Shallow Water Environment:Instrumentation and Experimental Data Analysis
Advisor:劉金源劉金源 author reflink
advisor (eng):Jim-Yuan Liu
degree:Master
Institution:國立中山大學
Department:海下技術研究所
Narrow Field:工程學門
Detailed Field:電資工程學類
Types of papers:Academic thesis/ dissertation
Publication Year:2006
Graduated Academic Year:94
language:Chinese
number of pages:139
keyword (chi):水下錄音系統沈積層極淺海聲傳
keyword (eng):Very shallow water acousticUnderwater recorderITC6050COASESSediment layer
Ncl record status:
  • Cited Cited :4
  • HitsHits:393
  • ScoreScore:system iconsystem iconsystem iconsystem iconsystem icon
  • DownloadDownload:0
  • gshot_favorites title msgFav:0
水中聲學的研究過去由於大洋作戰的需求,多以深海區域為主。然而近代對於海上建構物、港區監測等民生國防的需求增加,使水中聲學的研究領域逐漸從深海轉向淺海。淺海區由於水深因素及離岸距離近,影響水聲傳播的因素複雜,使淺海聲傳的參數取得與模式建立十分困難。本研究目的在探討極淺海區域聲傳現象,以建立高感度水下錄音系統收集水聲資料,並以程式模擬的方法尋找影響極淺海聲傳的主要參數。本研究分為三個部分:系統建置、實海域實驗、以及理論模擬與實驗的比較。系統建置以水聽器 ITC6050C 搭配資料擷取儀器,經測試後於極淺海區進行錄音實驗,將兩支 ITC6050C 分別懸吊於離海底 1 m 與離海面 2.5 m 處,並於水深10 m 左右以漁船引擎作為聲源來進行。理論模擬以波數積分法處理聲傳模式,佩克瑞斯波導 (Pekeris waveguide) 模擬淺海環境;模擬工具則使用聲學軟體OASES (Ocean Acoustics and Seismic Exploration Synthesis) 的聲傳損耗模組,以距離對頻率的聲強圖 (Spectrogram) 表示聲場分佈狀態,並嘗試各種環境參數進行模擬比較,進而發現影響聲場分佈的主控因子為沈積層壓力波、剪力波聲速及沈積層密度。依此結論來修正環境參數後可提高模擬的正確性,亦可得到更準確的參數值。本研究已建構出適用於淺海環境的錄音系統並驗證其可靠度,初步確認實驗區域的環境主控因子即為沈積層的壓力波聲速以及聲源深度,並初估沈積層壓力波聲速值。
Sound propagation in very shallow water is one of the issues of the ocean acoustic. Because of close distance to the shore and short range to the bottom, the building of sound propagation model in shallow water is much more difficult than in deep water. Even though, the increasing needs of upper-sea construction engineering and near-shore surveillance make this subject more and more important. This study is to build a high sensitive underwater recording system, use it to collect data and to find out which parameters affect the sound propagation in very shallow water most. The study contains underwater recording system construction, shallow water recording experiment and comparison of OASES simulation results and the collective data. The system is constructed with two ITC6050C hydrophones and data acquisition devices. After several tests of reliability, the system is put in the sea area about 10 m depth. And the two hydrophones were moored 1 m above the bottom and 2.5 m below sea surface separately. The experiment use a moving fishing boat motor noise as sound source and the experimental results are shown as the spectrogram of sound field. The computer simulation uses OASES modules to simulate the experimental area and Pekeris waveguide propagation as the theoretical environment of very shallow water. By comparing the simulation results and the collective data ,the study finds out that the major parameters of sound propagation in the experimental area are the pressure sound speed and the depth of the sound source.
第一章 緒論
1.1 研究主題與發展過程
1.2 文獻回顧
1.3 論文架構
第二章 理論背景
2.1 訊號基本原理
2.2 海洋環境噪聲
2.3 水聲傳播原理
2.4 Spectrogram的意義
第三章 實驗軟硬體介紹
3.1 水聲錄音系統各部零件
3.2 錄音、資料處理以及海洋聲學軟體
3.3 錄音裝置
第四章 錄音裝置性能測試與系統改良
4.1 高雄港區環境介紹
4.2 B&K8104錄音系統測試
4.3 B&K8104與ITC6050C之錄音效果測試
4.4 高雄港哈瑪星渡船頭錄音測試
4.5 結語
第五章 西子彎淺海區錄音實驗
5.1 實驗區域
5.2 實驗過程
5.3 實驗紀錄
5.4 實驗結果與分析
第六章 OASES模擬分析
6.1 探討參數影響的模擬環境
6.2 不同環境參數的影響
6.3 結語
第七章 實驗與模擬之比較
7.1 資料選取
7.2 環境參數值的設定
7.3 模擬與實測資料比較
7.4 綜合討論
第八章 結論與建議
8.1 結論
8.2 建議
附錄A 不同環境參數之模擬聲場分佈圖
Alison B. Duxbury and Keith A. Sverdrup,World''s Ocean, McGraw-Hill, New York, 2000.

Athanasios Papoulis and S. U. Pillai, Probability, Random Variables and Stochastic Process", McGraw-Hill, New York, 2002.

Bendat, J. S., Elastic Wave in Layered Media, McGraw-Hill, New York, 1957.

Brekhovskikh, L. M.,Fundamentals of Ocean Acoustics, Springer-Verlag, 1982.

Ewing, W. M., Jardetzky, W. S., and Piersol, A. G., Random Data, John Wiley&Sons, Singapore, 1982.

Jensen, F. B., W. A. Kuperman, M. B. Porter, and H. Schmidt, Computational Ocean Acoustics, AIP Press, New York, 1983.

Mallat, R. A., A Wavelet Tour of Signal Processing, Academic Press, 1988.

Denbigh, P., System Analysis & Signal Processing, Addison Wesley Longman Ltd., 1998.

Schmidt, H., OASES User Guide and Reference Manual, Depart of Ocean Engineering, Massachusetts Institute of Technology, 2002.

Thomas, P. K., Loren Shure, and John N. Little, Signal Processing Toolbox User''s Guide, The MathWorks Inc., 1998.

Urick, R. J., Principles of Underwater Sound, McGraw-Hill Companies, 1983.

Anderson, A. J., and G. J. Gruber,"Ambient Noise Measurements at 30, 60 and 150kHz in Five Ports", J. Acoust. Soc. Am., vol.49, pp. 928--952, 1971.

Azizuland, H. Q., and L. K. William,"Underwater Acoustic Communications", IEEE Communication Magazine, vol.20, pp.24--30, 1982.

Berman, D. H.,"Computing effective reflection coefficients in layered media", J. Acoust. Soc. Am., vol.101, pp. 741--748, 1997.

Buckingham, M. J., "Array Gain of a Broadside Vertical Line Array in Shallow Water", J. Acoust. Soc. Am., vol.65, pp. 827--873, 1979.

Finn B. J., and M. F. Carlo, "Numerical Solutions of Range-dependent Benchmark Problems in Ocean Acoustics", J. Acoust. Soc. Am., vol.87, pp. 645--682, 1990.

Hamilton, E. L., and R. T. Bachman, "Sound Velocity and Related Properties of Marine Sediments", J. Acoust. Soc. Am., vol.72, pp. 1313--1340, 1980.

Hoffman, J. P., J. D. Penrose, and D, R. McMahon, "Acoustic Propagation Prediction in Shallow Water", Australian Acoustical Society Conference, 2000.

Willams, K. L., R. J. Darrel, E. I. Thorsos, Dajun Tang, and S. G. Schock, "Comparison of Sound Speed and Attenuation Measured in a Sandy Sediment to Predictions Based on the Biot Theory of Porous Media", IEEE Journal of Oceanic Engineering, vol.27, pp. 813--832, 2002.

Knudsen, V. O., R. S. Alford, and J. W. Emiling, "Underwater Ambient Noise", J. Mar. Res., vol.7, pp. 410--425, 1948.

Glegg, S. A., G. B. Deane, and I. G. House, "Comparison between Theory and Model Scale Measurements of Three-dimensional Sound Propagation in a Shear Supporting Penetrable Wedge", J. Acoust. Soc. Am., vol.94, pp. 917--933, 1993.

Stickler, D., "A Shallow-water ocean acoustics inverse problem", ARLO, vol.6, pp. 175--192, 2005.

Tang, D.-J., "Inverting for Sandy Sediment Sound Speed in Very Shallow Water Using Boat Noise", Applied Physics Laboratory, University of Washington., 2005.

劉金源,《水中聲學─水聲系統之基本操作原理》,國立編譯館,2001。

劉金源,《海洋聲學導論─海洋聲波傳播與粗糙面散射之基本原理》,中山大學出版社,2002。

藍國桐,《通訊原理與應用》,全華科技圖書股份有限公司,2004。

施國楓,"各種隨機聲源對海表面所產生環境噪音的影響",國立中山大學海下技術研究所,民93。

陳民本,"台灣西南海域海床表層沉積構造與聲學特性圖集",國立台灣大學海洋研究所,民86。

謝銘信,"實海域之水下聲響通訊技術之探討",國立成功大學系統暨船舶機電工程學系碩士論文,民93。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
First Page Prev Page Next Page Last Page top
system icon system icon