跳到主要內容

臺灣博碩士論文加值系統

(44.200.94.150) 您好!臺灣時間:2024/10/05 19:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃偉傑
研究生(外文):Wei-Chieh Huang
論文名稱:OFDM系統下利用疊加完美序列之半盲式通道估測
論文名稱(外文):Semi-Blind Channel Estimation Using Superimposed Perfect Sequences for OFDM Systems
指導教授:李志鵬李志鵬引用關係
指導教授(外文):Chih-Peng Li
學位類別:碩士
校院名稱:國立中山大學
系所名稱:通訊工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:60
中文關鍵詞:通道估測正交分頻多工
外文關鍵詞:superimposing sequencePAPROFDMchannel estimation
相關次數:
  • 被引用被引用:2
  • 點閱點閱:264
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文中,我們提出一個矩陣架構以產生完美序列(Perfect sequence)。此矩陣中的列序列(Row sequence)和列序列經富利葉轉換(Discrete Fourier transform)後產生的序列皆為完美序列。行序列(Column sequence)在任意的循環位移下彼此為正交。而且將行序列乘上等振幅的複數係數後相加組合產生的序列,亦為一組完美序列。
此外,我們亦提出一種在OFDM系統中利用疊加序列的進行通道估測的演算法。由於完美序列具備有在時域和頻域都等振幅的特性,因此我們選擇完美序列作為疊加的序列。雖然因為未知的資料對通道估測造成了額外的干擾,我們所提出的通道估測器效能並沒有比傳統利用領航訊號的通道估測效能好,但是卻節省了傳輸領航訊號的頻寬,明顯增加有效資料傳輸速率。此外藉著完美序列在時域上為等振幅的特性,也可以同時改善傳送訊號的PAPR(Peak-to-average power ratio)。
A complex array for constructing perfect sequences is presented in this paper. The row sequences and their discrete Fourier transform form two sets of perfect sequences. The column sequences are orthogonal to each other for any cyclic shift. In addition, any combination of the column sequences with complex weighting coefficients of equal amplitude is also a perfect sequence.
In addition, a superimposed training scheme is also proposed for channel estimation in OFDM systems. The perfect sequence is adopted since it has a constant magnitude in both the time domain and the frequency domain. Although the derived channel estimator has a slightly worse performance since the unknown data contributes extra noise, the effective data throughput is substantially increased. In addition, the proposed scheme is shown to have a much better peak-to-average power ratio (PAPR) because the added perfect sequence has a constant magnitude in the time domain.
Chapter 1 Introduction ……………………………………………………1
1.1 Channel Estimation in OFDM Systems……………………………5

Chapter 2 Construction of The Proposed Array And Properties of The Constructed Sequences …………………………………………………10
2.1 Construction of The Proposed Array ……………………………10
2.2 Properties of The Proposed Sequences …………………………11
2.3 Applications of The Proposed Perfect Sequences…………………22

Chapter 3 Proposed Channel Estimation Scheme with Superimposed Training Sequences ………………………………………………………26
3.1 The Proposed System Model………………………………………26
3.2 The Proposed LS Channel Estimator …...………………………28
3.3 The Proposed Low-Complexity MMSE Channel Estimator ……32
3.4 The Simplified MMSE Channel Estimator ………………………36

Chapter 4 Simulation Results And Discussions…………………………38
4.1 The Power Allocation Factor………………………………….…...38
4.2 MSE of The Proposed MMSE Channel Estimator………………40
4.3 BER And Effective Data Throughput of The Proposed System….42
4.4 The PAPR of The Proposed System……………………………….45

Chapter 5 Conclusions And Future Researches………………………47
5.1 Conclusions……………………………………………….……….47
5.2 Future Researches ………………………………………………48

Appendix …………………………………………………………………50

References ………………………………………………………………51
[1] C. Chu, “Polyphase codes with good periodic correlation properties,” IEEE Trans. Info. Theory, vol. IT-18, no. 4, pp. 531–532, July 1972.
[2] R. L. Frank, and S. A. Zadoff, “Phase shift pulse codes with good periodic correlation properties,” IEEE Trans. Info. Theory, vol. IT-8, no. 6, pp.381–382, Oct. 1962.
[3] R. L. Frank, “Comments on polyphase codes with good correlation properties,” IEEE Trans. Info. Theory, vol IT-19 pp. 244, Mar. 1973.
[4] W. H. Mow, “A new unified construction of perfect root-of-unity sequences,” in Proc. Int. Symp. Spread Spectrum Techniques and Its Applications (ISSSTA’96), Mainz, Germany, pp. 955–959, Sep. 22–25, 1996.
[5] B. M. Popovic, “Generalized chirp-like polyphase sequences with optimum correlation properties,” IEEE Trans. Info. Theory, vol. 38, no. 4, pp. 1406–1409, July 1992.
[6] Ernst M. Gabidulin, and Vitaly V. Shorin, “Unimodular perfect sequences of length ,” IEEE Trans. Info. Theory, vol. 51, no. 3, pp. 1163–1166, March 2005.
[7] S. Adireddy, L. Tong, and H. Viswanathan, “Optimal placement of training for frequency-slective block-fading channels,” IEEE Trans. Inf. Theory, vol. 48, no. 8, pp. 2338–2352, Aug. 2002.
[8] B. Farhang-Boroujeny, “Pilot-based channel identification: proposal for semi-blind identification of communication channels,” Electron. Lett., vol 31, no. 13, pp. 1044-1046, June 1995.
[9] G. T. Zhou, M. Viberg, and T. McKelvey, “First-order statistical method for channel estimation,” IEEE Signal Process. Lett., vol. 10, no. 3, pp. 57–60, Mar. 2003.
[10] J. Tugnait and W. Luo, “On channel estimation using superimposed training and first-order statistics,” IEEE Commun. Lett., vol. 7, no. 9, pp. 413–415, Sep. 2003.
[11] A. G. Orozco-Lugo, M. M. Lara, and D. C. McLernon, “Channel estimation using implicit training,” IEEE Trans. Signal Process., vol. 52, no. 1, pp. 240–254, Jan. 2004.
[12] Ghogho, M., McLernon, D., Alameda-Hernandez, E., and Swami, A., “Channel estimation and symbol detection for block transmission using data-dependent superimposed training,” IEEE Trans. Signal Process Lett., vol. 12, no. 3, pp. 226-229,Mar. 2005.
[13] Ning Chen, G. Tong Zhou, “What is the price paid for superimposed training in OFDM?” Proc. IEEE Int. Conf. Acoustic, Speech, Signal, Processing, pp.421-424, May 2004.
[14] J.-J. Van de Beck O. Edfom M. Sandell, S. K. Wilson, and P. O. Bojesson, “On channel estimation in OFDM systems,” in Proc. 4 2 IEEE Vehicular Technology conf, Chicago, IL, July 1995, pp. 815-819.
[15] O. Edfors, M. Sandell, J.-J. Van de Beek, S. K. Wilson and P. O. Bojesson, “OFDM channel estimation by singular value decomposition,” IEEE Trans. Commun. Vol. 46, pp. 931-939, July 1998.
[16] Wireless LAN Medium Access Control(MAC) and Physical Layer(PHY) Specifications, IEEE Standard 802.11a 1999.
[17] S. M. Kay, Fundamentals of Statistical Signal Processing, Englewood Cliffs, NJ: Prentice-Hall, 1993, vol. 1, Estimation Theory.
[18] Habib Senol, Hakan A. Cripan and Erdal Panayirci, “Pilot-Aided Baysian MMSE Channel Estimation for OFDM Systems Algorithm and Performance Analysis,” in IEEE Globecom Conference, 2004, pp. 2361-2365.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top