|
[1] J. M. Adams, J. M. Phelan, and R. H. Stark, A note on the Hecht-Ullman characterization of nonreducible flow graphs, SIAM J. Comput. 3 (1974) 222–223. [2] A. V. Aho, R. Sethi, and J. D. Ullman, Compilers: Principles, Techniques and Tools, Addison-Wesley, Reading, MA, 1986. [3] A. V. Aho and J. D. Ullman, The Theory of Parsing, Translation and Compiling, Prentice-Hall, Englewood Cliffs, NJ, 1973. [4] M. D. Carrol and B. G. Ryder, Incremental data flow analysis via dominator and attribute updates, Proceedings of the 15th Annual ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages, 1988, pp. 274–284. [5] S. Chen and D. R. Ryan, A comparison of three algorithms for finding fundamental cycles in a directed graph, Networks 11 (1981) 1–12. [6] M. S. Hecht and J. D. Ullman, Flow graph reducibility, SIAM J. Comput. 1 (1972) 188–202. [7] M. S. Hecht and J. D. Ullman, Characterization of reducible flow graphs, J. Assoc. Comput. Mach. 21 (1974) 367–375. [8] M. S. Hecht and J. D. Ullman, A simple algorithm for global data flow analysis problems, SIAM J. Comput. 4 (1975) 519–532. [9] A. Nijenhuis and H. Wilf, Combinatorial Algorithms for Computers and Calculators, Academic Press, Orlando, FL, 1978. [10] V. Ramachandran, A minimax arc theorem for reducible flow graphs, SIAM J. Disc. Math. 3 (1990) 554–560. [11] G. Ramalingam and T. Reps, An incremental algorithm for maintaining the dominator tree of a reducible flowgraph, Conference Record of the 21st ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages, 1994, pp. 287–296. [12] R. C. Read and R. E. Tarjan, Bounds on backtrack algorithms for listing cycles, paths, and spanning trees, Networks 5 (1975) 237–252. [13] E. M. Reingold, J. Nievergelt, and N. Deo, Combinatorial Algorithms: Theory and Practice, Prentice-Hall, Englewood Cliffs, NJ, 1977. [14] A. Shamir, A linear time algorithm for finding minimum cutsets in reducible flowgraphs, SIAM J. Comput. 8 (1979) 645–655. [15] V. C. Sreedhar, Efficient program analysis using DJ-Graphs, Ph.D. Thesis, School of Computer Science, McGill University, Montreal, Canada, 1995. [16] V. C. Sreedhar, Y-F. Lee, G. R. Gao, Incremental computation of dominator trees, Proceedings of the ACM SIGPLAN Workshop on Intermediate Representations, 1995, pp. 1–12. [17] J. L. Szwarcfiter, On digraphs with a rooted tree structure, Networks 15 (1985) 49–57. [18] R. E. Tarjan, Enumeration of elementary circuits of a directed graph, SIAM J. Comput. 2 (1974) 211–216. [19] J. C. Tiernan, An efficient search algorithm to find the elementary circuits of a graph, Comm. ACM 13 (1970) 722–726. [20] O. Vernet, Maximalidade em grafos de fluxo redutiveis, D.Sc. Thesis, COPPE, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil, 1997. [21] O. Vernet and L. Markenzon, Hamiltonian problems for reducible flowgraphs, Proceedings of the XVII International Conference of the Chilean Computer Science Society, Valparaiso, Chile, 1997, pp. 264–267. [22] O. Vernet and L. Markenzon, Characterizations and properties of maximal reducible flowgraphs, Congr. Numer. 139 (1999) 9–20. [23] O. Vernet and L. Markenzon, Solving problems for maximal reducible flowgraphs, Discrete Appl. Math. 136 (2004) 341–348. [24] H. Weinblatt, A new search algorithm for finding the simple cycles of a finite directed graph, J. ACM 19 (1973) 43–56. [25] J. T. Welch, A mechanical analysis of the cyclic structure of undirected linear graphs, J. ACM 13 (1966) 205–210.
|