中文部份
郭伯臣、吳慧珉、楊晉民、柯立偉、白家豪(民92)。樣式辨識技術於學生補救教學分組之應用-以國小數學領域「扇形」單元為例,九十二學年度師範學院教育學術論文發表會,台南師院,10月24-25日。
郭伯臣(民95)統計樣式辨認於測驗資料之應用。測驗統計年刊,第十三輯下期,pp.146-170。英文部份
Bertoni, A., Folgieri, R. & Valentini, G. (2004). “Random Subspace Ensembles for the Bio-molecular Diagnosis of Tumors,” Models and Metaphors from Biology to Bioinformatics Tools, NETTAB.
Bertoni, A., Folgieri, R. & Valentini, G. (2004). “Feature Selection Combined with Random Subspace Ensemble for Gene Expression Based Diagnosis of Malignancies,” Workshop on Neural Networks, Methods for bioinformatics and biostatistics.
Breiman, L. (1996). Bagging Predictors, Machine Learning, 24(2), 123-140.Freund,
Y., Schapire, RE., Experiments with A New Boosting Algorithm.
Dietterich, T. G. (2000). Ensemble Methods in Machine Learning, First International
Workshop of Multiple Classifier Systems, vol. 1857, pp. 1-15
Duin, R. P. W. (2003). A Matlab Toolbox for Pattern Recognition, Software available
at http://ftp.ph.tn.tudelft.nl/pub/bob/prtools/.
Fisher, R.A. (1936). The use of multiple measures in taxonomic problems. Ann.
Eugenics, vol. 7, pp. 179-188
Fukunaga, K. (1990). Introduction to Statistical Pattern Recognition, San Diego:
Academic Press Inc.
Ho, T. K. (1998). “The Random Subspace Method for Constructing Decision
Forests, ”Pattern Analysis and Machine Intelligence, IEEE Trans. Vol. 20, no. 8, pp.832-344.
Ho, T. K. (1998). “Nearest Neighbors in Random Subspaces,” Proceedings of the
Second International Workshop on Statistical Techniques in Pattern Recognition,
Sydney, Australia, August 11-13, pp. 640-648.
Kittler, J., Hatef, M., Duin, R.P.W., & Matas, J. (1998). On Combining Classifiers,
IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(3),
226-239.
Kuo, B-C , Hsieh Y-C , Liu H-C, & Chao R-M (2005). “A Random Subspace Method with Automatic Dimensionality Selection for Hyperspectral Image Classification, ”Proceedings of International Geoscience and Remote Sensing
Symposium.
Kuo, B-C. & Landgrebe, D. A. (2001). Improved Statistics Estimation and Feature
Extraction for Hyperspectral Data Classification, Technical Report, Purdue
University, West Lafayette, IN., TR-ECE 01-6.
Kuo, B-C., Pai, C-H., Sheu, T-W., & Chen, G-S. (2004). “Hyperspectral Data Classification Using Classifier Overproduction and Fusion Strategies, ”Proceedings of International Geoscience and Remote Sensing Symposium.
Landgrebe, D. A. (2003). Signal Theory Methods in Multispectral Remote Sensing, John Wiley and Sons, Hoboken, NJ: Chichester.
Roli, F., Giacinto, G.(2002). Design of Multiple Classifier Systems, H. Bunke and
A.Kandel (Eds.) Hybrid Methods in Pattern Recognition. Skurichina, M. & Duin, R. P. W. (2001). “Bagging and the Random Subspace Method for Redundant Feature Spaces,” Second International Workshop of Multiple Classifier Systems, pp.1-10.
Skurichina, M. & Duin, R. P. W. (2002). “Bagging, Boosting and the Random Subspace Method for Linear Classifiers,” Pattern Analysis & Applications, Vol. 5, no. 8, pp.121-135.
Skurichina, M. & Duin, R.P.W.(1998). Bagging for Linear Classifiers, Pattern Recognition, 31(7), 909-930.
Skurichina, M., Duin, RPW., (2000). The Role of Combining Rules in Bagging and Boosting, Lecture Notes in Computer Science, 1876, 631-640.