(18.204.2.190) 您好!臺灣時間:2021/04/22 08:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:駱俊良
研究生(外文):Chun-Liang Lo
論文名稱:新穎智慧型奈米藥物傳輸系統之研發及其在癌症治療上之應用
論文名稱(外文):Investigation of Novel Intelligence Micelles as Drug Carriers and Their Application in Cancer Therapy
指導教授:薛敬和薛敬和引用關係
指導教授(外文):Ging-Ho Hsiue
學位類別:博士
校院名稱:國立清華大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:94
語文別:中文
論文頁數:194
中文關鍵詞:高分子微胞複合型微胞溫度應答性酸鹼應答性細胞內藥物傳遞癌症治療
外文關鍵詞:Polymeric micellesMixed micellesthermal sensitivitypH sensitivityIntracellular drug deliveryCancer therapy
相關次數:
  • 被引用被引用:2
  • 點閱點閱:1351
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:193
  • 收藏至我的研究室書目清單書目收藏:0
奈米技術的發展在21世紀是一個倍受重視的研究領域,尤其在醫藥及生技上的潛力更是無限。而近幾年發展中,兩種形態高分子所排列而成之「複合型奈米微胞」逐漸受到重視而嶄露頭角。複合型奈米微胞之研究不單是一般高分子行為基礎研究,而更是實現單一顆奈米微胞同時集「多功能性」於一身之夢想的延伸。
本研究旨在建立一製備多功能複合型奈米微胞之技術平台,並藉由此複合型奈米微胞包覆抗癌藥物以應用於癌症治療上。本研究將分三部份分別陳述(1)具環境應答性接枝共聚合物在奈米微胞上之設計及其在細胞內藥物傳輸上之應用、(2)複合型奈米微胞之設計及其形成機制探討、與(3)複合型奈米微胞在癌症治療上之應用。

第一部份、具溫度應答與酸鹼應答高分子奈米微胞之研發及其在細胞內藥物傳輸之應用
本研究合成一同時具有溫度應答與酸鹼應答之接枝共聚合物PLA-g-P(NIPAAm-co-MAAc),以透析法製備外殼由P(NIPAam-co- MAAc)構築而內核由PLA組成之殼核結構「智慧型」奈米微胞。微胞在中性環境下藉由親水性分子MAAc離子化以提高PNIPAAm之低溫臨界溶液溫度(lower critical solution temperature, LCST),使其能溶解於水中。而在酸性環境下,MAAc去離子化使PNIPAAm之LCST得以顯現並產生聚集,進而造成微胞內核PLA產生結構改變。研究顯示,微胞在酸性環境下與細胞內皆可產生結構破壞現象。藉由內核所包覆之藥物可因結構破壞瞬間釋出,以達到藥物控制釋放之特性。
第二部份、以接枝共聚合物與團聯共聚合物於複合型奈米微胞之研發
本研究突破以往高分子型奈米微胞製程上之單一組成方式,採取「接枝共聚合物」與「雙團聯共聚合物」兩種不同形態之高分子共聚物混合系統,以發展並建立一全新之「多功能性複合型奈米微胞」。複合型奈米微胞乃是延續第一部份以PLA-g-P(NIPAAm-co-MAAc) 離子型接枝共聚合物為主體,添加mPEG-PLA非離子型兩團聯共聚合物共同組裝而成。研究中探討離子型共聚合物與非離子型共聚合物在水溶液中聚集行為、臨界微胞濃度(critical micelle concentration, CMC)對共聚合物聚集行為之影響、以及不同溶劑對共聚合物聚集行為之影響等。研究結果顯示,複合型微胞之形成機制乃由低臨界微胞濃度之接枝共聚合物所決定。在任何組成比例下,接枝共聚合物PLA-g-P(NIPAAm-co-MAAc)與雙團聯共聚合物之疏水端先形成微胞前驅膨潤結構後,高臨界微胞濃度之雙團聯共聚合物之疏水端與接枝共聚合物之疏水端產生排列,而溶劑中之游離雙團聯共聚合物再逐漸進入微胞前驅結構。而兩共聚合物之組成比、相互作用力、雙團聯共聚合物之鏈段長短以及微胞製備之溶劑僅能影響複合型微胞最後之粒徑大小與分佈。
除了兩組成之複合型奈米微胞外,本研究亦再添加另一不同化學結構之雙團聯共聚合物PEOz-PLA,以探討三組成複合型奈米微胞之形成。研究結果顯示,三組成之複合型奈米微胞乃由PLA-g- P(NIPAAm-co-MAAc)與PEOz-PLA共同形成一臨界微胞濃度,但由於mPEG-PLA可與P(NIPAAm-co-MAAc)產生作用力,故微胞初期即由三組成共同形成前驅膨潤結構,於溶劑中游離之兩雙團聯共聚合物再逐漸進入微胞前驅結構。但不同鏈長之mPEG-PLA將影響PEOz-PLA進入微胞之能力以及微胞粒徑之大小。
第三部份、複合型奈米微胞於癌症治療之應用
本研究主要第二部份之複合型奈米微胞包覆抗癌藥物Doxorubicin (Dox)以應用於癌細胞之細胞內藥物傳輸上。雙團聯共聚合物之mPEG可隱蔽內核結構中疏水性材料與強帶電性材料,藉由EPR效應(enhanced permeability and retention effect)增加複合型奈米藥物微胞於體內之穩定性與細胞吞噬量。而複合型微胞內核具有環境應答性,因此可針對細胞內外之環境差異釋放藥物。研究結果顯示,複合型奈米微胞外殼之mPEG可有效的防止蛋白質與疏水性結構發生疏水性相互作用,且其遮蔽強負電性之能力對細胞產生較低之毒性及較高之細胞吞噬量,因此複合型奈米藥物微胞之藥物毒殺能力較強。而內核之環境應答性可使複合型奈米藥物微胞在酸性環境下,初期前2小時即有50 % 之Dox自載體釋放。由共軛焦顯微鏡可明顯得知複合型奈米藥物微胞具有細胞內藥物釋放之能力,顯示此特殊結構之複合型奈米微胞可針對癌細胞達到「適時」與「適地」之控制釋放的效果,在藥物傳輸上極具開發之潛力。
Nano-technology is one of the most attention fields of technological area in 21 century, especially in medicine and bio-technology. In the recent year, mixed micelles have attracted many interests and attention in two kinds of polymer blending and assembling. The investigation of micellization from two or more kinds of copolymer is a promising candidate in both fundamental research and practical applications.
The main goal of this study is to establish a template for preparing a novel mixed micelle from graft and diblock copolymers, and to use it in cancer therapy. This study is divided into three major topics, including (1) preparation an environmental sensitive micelle from graft copolymers for use in intracellular drug delivery, (2) investigation and discussion of a novel mixed micelle structure from graft-diblock copolymers system, and (3) application the mixed micelle in cancer theapy.

(1) Investigation of Polymeric Micelles with a Temperature / pH Sensitive Structure for Application in Intracellular Drug Delivery.
In this topic, a new thermo-responsive, pH-responsive, and biodegradable micelle comprised of poly(D,L-lactide)-graft-poly(N-isopropyl acrylamide-co- methacrylic acid) (PLA-g-P(NIPAm-co-MAA)) were developed by grafting biodegradable poly(D,L-lactide) onto N-isopropyl acrylamide and methacrylic acid. A core-shell type nano-structure was formed with a hydrophilic outer shell and a hydrophobic inner core, which exhibited a phase transition temperature above 37 ℃ suitable for biomedical application. Upon heating above the phase transition temperature, PLA-g-P(NIPAm-co-MAA) micelle showed a polarity increasing of pyrene in either buffer solution or intra hepato-carcinoma cells as determined by fluorescence measurement, indicating that the structure of micelles caused leakages from out shell copolymers aggregation and collapse. The drug loading level of 5-fluorouracil (5-FU) encapsulated in the PLA-g-P(NIPAm-co-MAA) micelles can be as high as 20 %. The release of 5-FU from micelles was strongly controlled by the pH in the aqueous solution. Based on these results, PLA-g-P(NIPAm-co-MAA) micelles can be used as a drug carrier for intracellular delivery of anti-cancer drug.

(2) Investigation of Mixed Micelles from a Graft Copolymer and a Diblock Copolymer.
In the second topic, a novel mixed micelle with multifunctions was prepared from a polyelectrolyte of PLA-g-P(NIPAAm-co-MAAc) graft copolymer and a nonelectrolyte of mPEG-PLA diblock copolymer. The behavior of micellization of graft and diblock copolymers was studied detail by dynamic light scattering, fluorescence, Doppler microelectrophoresis, and other techniques. The results indicate that the micellization of mixed micelle is controlled by the graft copolymer, which has the lowest CMC. As initial water added into graft / diblock copolymer solution, the hydrophobic interactions of graft copolymers were increased, and hydrogen bonding occured between MAAc and mPEG; graft copolymers associated to form a swollen core-shell like pre-structure, the hydrophobic segments of diblock copolymer tended to arrange with graft copolymers, and the unimers of diblock copolymer associated into the pre-structure forming a mixed micelle. Otherwise, micellization of mixed micelles was also compared with different molar ratios and composition ratios of graft / diblock copolymers. The results show that these factors only influence the particle diameters and size distributions.
Besides, another diblock copolymer, PEOz-PLA was added to prepare three component mixed micelles. The results indicate that PLA-g-P(NIPAAm-co-MAAc) and PEOz-PLA have the same CMC to form a swollen core-shell like pre-structure. The hydrogen bonding between MAAc and mPEG, and the molar ratios of graft / diblock copolymers were only influenced the particle diameters and size distributions.

(3) Evaluation of Mixed Micelle for Application in Cancer Therapy.
In the last topic, the mixed micelle comprised PLA-g-P(NIPAAm-co-MAAc) with mPEG-PLA was incorporated with anticancer drug, doxorubicin (Dox) for application in cancer therapy. The mixed micelle had an multi-functional inner core of PLA-g-P(NIPAAm-co-MAAc) to enable intracellular drug delivery and an extended hydrophilic outer shell of mPEG to hide the inner core. Via pH changes, the structure of inner core caused deformation from P(NIPAAm-co-MAAc) aggregation and collapsed. This variation induced the release of a significant amount of Dox from mixed micelles. Clear differences between free Dox and Dox-mixed micelles were observed using confocal laser scanning microscopy (CLSM). Additionally, the efficiency of screening feature also displayed in cytotoxicities; mixed micelle exhibited higher drug activity and lower material cytotoxicity than micelle from graft copolymer. This study presents not only a new micelle structure for a graft-diblock copolymer system, but also a method for determining some of the limitations on biomaterials used in intravenous injection.
目 錄


中文摘要……………………………………………………………. i
英文摘要……………………………………………………………. iv
謝誌…………………………………………………………………. vii
目錄…………………………………………………………………. viii
圖目錄………………………………………………………………. xiii
表目錄………………………………………………………………. xx

第一部份 文獻回顧.………………………………………………. 1
1-1 腫瘤組織與奈米微胞在藥物傳遞上之關係………………. 2
1-1-1 腫瘤組織構造與藥物傳遞之關係…………………….. 2
1-1-2 奈米藥物載體在癌症治療之傳遞模式……………….. 3
1-1-3 奈米藥物載體之細胞吞噬機制……………………….. 7
1-2 高分子型奈米微胞在癌症治療上之設計與應用…………. 9
1-2-1 傳統性奈米粒子……………………………………….. 10
1-2-2 免疫隱蔽性奈米微胞………………………………….. 11
1-2-3 癌細胞辨識性奈米微胞……………………………….. 12
1-2-4 生物可分解型微胞…………………………………….. 13
1-2-5 溫度應答型微胞……………………………………….. 13
1-2-6 酸鹼應答型微胞……………………………………….. 15
1-3 微胞形成原理……………………………………………….. 18
1-3-1 高分子與微脂粒系統………………………………….. 20
1-3-2 高分子與高分子系統………………………………….. 23

第二部份 具溫度應答與酸鹼應答高分子奈米微胞之研發及其在細胞內藥物傳輸之應用…………………………….. 30
第一章 研究背景與動機…………………………………………. 31
第二章 實驗方法…………………………………………………. 34
2-1 實驗藥品…………………………………………………….. 34
2-2 實驗儀器與裝置…………………………………………….. 35
2-3 名詞對照…………………………………………………….. 36
2-4 功能性接枝共聚物PLA-g-P(NIPAAm-co-MAAc)之合成與鑑定………………………………………………………. 37
2-4-1 PLA之合成……………………………………………... 37
2-4-2 PLA-MA之合成………………………………………... 37
2-4-3 PLA-g-P(NIPAAm-co-MAAc)之合成………………….. 38
2-4-4 PLA-g-PNIPAAm之合成………………………………. 38
2-4-5 結構鑑定與分析……………………………………….. 39
2-5 奈米微胞之製備…………………………………………….. 39
2-6 奈米微胞之鑑定與性質分析……………………………….. 40
2-6-1 粒徑分析……………………………………………….. 40
2-6-2 微胞殼核結構之1H-NMR鑑定……………………….. 40
2-6-3 奈米微胞之相轉移(phase transition)分析…………….. 40
2-6-4 奈米微胞之微結構破壞分析………………………….. 41
2-7 高分子聚集行為分析………………………………………. 41
2-8 奈米微胞之藥物包覆及性質鑑定…………………………. 41
2-9 細胞內奈米微胞結構破壞評估…………………………….. 42
2-10 奈米微胞之藥物釋放行為探討…………………………… 42
第三章 結果與討論………………………………………………. 44
3-1 功能性接枝共聚物PLA-g-P(NIPAAm-co-MAAc)之製備與鑑定………………………………………………………. 44
3-2 奈米微胞之製備與鑑定……………………………………. 49
3-3 奈米微胞之溫度與酸鹼應答行為…………………………. 52
3-4 奈米微胞在緩衝溶液之微結構破壞探討…………………. 55
3-5 奈米微胞在細胞內之微結構破壞探討……………………. 60
3-6 接枝共聚合物聚集行為探討………………………………. 62
3-7 接枝共聚合物聚集行對於藥物包覆之影響………………. 64
3-8 奈米藥物微胞之藥物釋放行為……………………………. 66
第四章 結論………………………………………………………. 69

第三部份 以接枝共聚合物與團聯共聚合物於複合型奈米微胞之研發…………………………………………………... 72
第一章 研究背景與動機…………………………………………. 73
第二章 實驗方法…………………………………………………. 75
2-1 實驗藥品……………………………………………………. 75
2-2 實驗儀器與裝置……………………………………………. 76
2-3 名詞對照……………………………………………………. 77
2-4 功能性接枝共聚物PLA-g-P(NIPAAm-co-MAAc)之合成... 77
2-4-1 PLA-EMA之合成………………………………………. 77
2-4-2 PLA-g-P(NIPAAm-co-MAAc)之合成…………………. 78
2-5 兩團聯共聚合物mPEG-PLA之合成……………………… 78
2-6 兩團聯共聚合物PEOz-PLA之合成………………………. 79
2-6-1 PEOz之合成……………………………………………. 79
2-6-2 PEOz-PLA之合成……………………………………… 79
2-7 共聚合物之結構鑑定與分析………………………………. 80
2-8 複合型奈米微胞之製備……………………………………. 81
2-8-1 兩成份複合型奈米微胞之製備……………………….. 81
2-8-2 三成份複合型奈米微胞之製備……………………….. 81
2-9 奈米微胞之鑑定與性質分析………………………………. 82
第三章 結果與討論………………………………………………. 84
3-1 功能性接枝共聚物PLA-g-P(NIPAAm-co-MAAc)之製備與鑑定………………………………………………………. 84
3-2 兩團聯共聚合物mPEG-PLA之製備與鑑定……………… 87
3-3 兩團聯共聚合物PEOz-PLA之製備與鑑定………………. 89
3-4 臨界微胞濃度之鑑定………………………………………. 92
3-5 兩成份複合型奈米微胞之製備及探討……………………. 96
3-5-1 CMCGraft I << CMCBlock I and II……………………………. 96
3-5-2 CMCGraft II < CMCBlock I and II……………………………... 110
3-6 溶劑對複合型奈米微胞製備之影響………………………. 124
3-6-1 CMCGraft I << CMCBlock I and II……………………………. 126
3-6-2 CMCGraft II < CMCBlock I and II……………………………... 128
3-7 三成份複合型奈米微胞之製備及探討……………………. 130
第四章 結論………………………………………………………. 143

第四部份 複合型奈米微胞於癌症治療之應用…………………... 146
第一章 研究背景與動機…………………………………………. 147
第二章 實驗方法…………………………………………………. 149
2-1 實驗藥品……………………………………………………. 149
2-2 實驗儀器與裝置……………………………………………. 150
2-3 名詞對照……………………………………………………. 151
2-4 複合型奈米微胞之製備……………………………………. 151
2-5 複合型奈米微胞之鑑定與性質分析………………………. 152
2-6 複合型奈米微胞之藥物包覆及性質鑑定…………………. 153
2-7 複合型奈米藥物微胞之藥物釋放行為探討………………. 154
2-8複合型奈米微胞之安定性測試…………………………….. 154
2-9複合型奈米藥物微胞之細胞毒殺測試…………………….. 154
2-10 藥物分佈與微胞之內吞作用……………………………... 155
第三章 結果與討論………………………………………………. 157
3-1 複合型奈米微胞之最佳化…………………………………. 157
3-2 複合型奈米微胞之製備與性質分析………………………. 159
3-3 複合型奈米微胞之微結構破壞測試………………………. 166
3-4 複合型奈米微胞之藥物包覆………………………………. 168
3-5 複合型奈米藥物微胞之藥物釋放行為……………………. 170
3-6 細胞毒殺測試………………………………………………. 174
3-7 複合型奈米微胞穩定性測試………………………………. 177
3-8 複合型奈米微胞之細胞內藥物釋放與分佈測試…………. 179
第四章 結論………………………………………………………. 185

參考文獻………………………………………………………….. 188












圖 目 錄


第一部份 文獻回顧
圖1-1、奈米粒子藥物載體自血液累積於腫瘤或癌細胞之傳輸模式示意圖。………………………………………………… 4
圖1-2、EPR效應(enhanced permeability and retention effect)示意圖。………………………………………………………… 6
圖1-3、腫瘤組織之血管增生。…………………………………… 6
圖1-4、藥物載體於組織或細胞內之藥物釋放模式示意圖。…… 7
圖1-5、細胞內吞作用之三種吞噬機制。………………………… 8
圖1-6、PEG-PAsp(Dox)結構及微胞示意圖。……………………. 12
圖1-7、PEG-P(Asp-Hyd-ADR)微胞結構與材料結構示意圖。….. 15
圖1-8、PEO-10K-[G-4]-polyester-carbamate-acetal微胞藥物釋放示意圖。…………………………………………………… 16
圖1-9、PHis-PEG與PLLA-PEG-PHis-biotin之複合型微胞結構與結構破壞示意圖。……………………………………… 17
圖1-10、高分子-微脂粒複合型奈米微胞之形態示意圖。……… 21
圖1-11、含poly(ethylene glycol)高分子衍生物之微脂粒。…….. 22
圖1-12、帶正電高分子衍生物與陰離子型微脂粒結合之複合型奈米微胞。……………………………………………….. 23
圖1-13、電性結合式高分子複合型奈米微胞。………………… 24
圖1-14、添加crosslinker之電性結合式高分子複合型奈米微胞。. 25

第二部份 具溫度應答與酸鹼應答高分子奈米微胞之研發及其在細胞內藥物傳輸之應用
圖1-1、奈米藥物微胞之細胞吞噬與藥物釋放示意圖。………… 33
圖1-2、奈米藥物微胞之應答行為與藥物釋放示意圖。…………. 33
圖3-1、PLA於DMSO-d6之1H-NMR光譜圖。……………….. 45
圖3-2、PLA之GPC分子量測定圖。……………………………. 45
圖3-3、PLA-MA於DMSO-d6之1H-NMR光譜圖。…………… 46
圖3-4、PLA-g-P(NIPAAm-co-MAAc)接枝共聚合物與standard (mPEG)於DMSO-d6之1H-NMR光譜圖。…………….. 48
圖3-5、PLA-g-P(NIPAAm-co-MAAc)接枝共聚合物之FT-IR光譜圖。……………………………………………………… 48
圖3-6、奈米微胞懸浮於D2O中以1H-NMR鑑定其殼核結構。. 52
圖3-7、奈米微胞於不同溫度下之低溫臨界溶液溫度。………… 53
圖3-8、奈米微胞於不同pH值下之相轉移變化。……………… 54
圖3-9、PNM3微胞在不同pH值環境下pyrene分子之I1 / I3 隨溫度改變之變化情形。………………………………… 56
圖3-10、PNM3微胞在pH 7.4及溫度50℃下pyrene分子之 I1 / I3隨時間改變之變化情形。………………………… 58
圖3-11、PNM3微胞在pH 5.0及溫度37℃下其pyrene分子之 I1 / I3隨時間改變之變化情形。…………………………. 59
圖3-12、PNM3微胞包覆pyrene分子在肝癌細胞HA22T之螢光變化情形。…………………………………………….. 61
圖3-13、PNM3微胞包覆pyrene分子在細胞培養基之螢光變化情形。…………………………………………………….. 62
圖3-14、接枝共聚合物在不同比例之H2O/DMSO混和溶液下其聚集行為。……………………………………………….. 63
圖3-15、PNM3奈米微胞之5-FU藥物包覆率與水含量之關係。. 66
圖3-16、PNM3奈米藥物微胞於不同pH值下之藥物釋放行為。. 67

第三部份 以接枝共聚合物與團聯共聚合物於複合型奈米微胞之研發
圖1-1、兩組成複合型奈米微胞示意圖。………………………… 74
圖1-2、三組成複合型奈米微胞及其性質之示意圖。…………… 74
圖3-1、PLA-EMA之1H-NMR光譜圖。………………………… 85

圖3-2、PLA-g-P(NIPAAm-co-MAAc)與standard (mPEG)於DMSO-d6之1H-NMR光譜圖。…………………………

86
圖3-3、PLA-g-P(NIPAAm-co-MAAc)之FT-IR光譜圖。……… 87
圖3-4、mPEG-PLA於DMSO-d6之1H-NMR光譜圖。………… 88
圖3-5、mPEG-PLA之FT-IR光譜圖。…………………………… 89
圖3-6、PEOz高分子之1H-NMR光譜圖。………………………. 90
圖3-7、PEOz-PLA之1H-NMR光譜圖。………………………… 91
圖3-8、PEOz-PLA之FT-IR光譜圖。…………………………… 91
圖3-9、pyrene分子於不同PEOz-PLA共聚合物濃度下其激發 光譜337.5nm與335.5nm之強度變化情形。……………. 93
圖3-10、PLA-g-P(NIPAAm-co-MAAc)接枝共聚合物之臨界微胞濃度。…………………………………………………….. 94
圖3-11、mPEG-PLA雙團聯共聚合物之臨界微胞濃度。………. 95
圖3-12、PEOz-PLA雙團聯共聚合物之臨界微胞濃度。……….. 95
圖3-13、Graft I copolymer與Block I及Block II copolymers在 不同混合比例下之粒徑大小與粒徑分佈。……………. 97
圖3-14、Graft I copolymer與Block I及Block II copolymers在 不同混合比例下之界面電位。…………………………. 98
圖3-15、Graft I與mPEG以動態光散射觀察粒徑變化與水含量之關係。…………………………………………………. 100
圖3-16、Graft I與mPEG以動態光散射觀察PI變化與水含量之關係。……………………………………………………. 101
圖3-17、Graft I copolymer與Block I copolymer之臨界微胞濃 度。………………………………………………………. 102
圖3-18、Graft I copolymer與Block II copolymer之臨界微胞濃度。………………………………………………………. 103
圖3-19、Graft I與Block I以動態光散射觀察粒徑變化與水含量之關係。…………………………………………………. 105
圖3-20、Graft I與Block I以動態光散射觀察PI變化與水含量之關係。…………………………………………………. 105
圖3-21、Graft I與Block I形成複合型奈米微胞之形成機制示意圖。………………………………………………………. 106
圖3-22、複合型微胞之Molecular weight。……………………… 108
圖3-23、不同混合比例之Graft I與Block I複合型奈米微胞懸浮於D2O之1H- NMR光譜圖。………………………….. 109
圖3-24、不同混合比例之Graft I與Block I複合型奈米微胞溶解於DMSO-d6之1H- NMR光譜圖。……………………. 110
圖3-25、Graft II copolymer與Block I及Block II copolymers在不同混合比例下之粒徑大小與粒徑分佈。……………. 112
圖3-26、Graft II copolymer與Block I及Block II copolymers在不同混合比例下之界面電位。…………………………. 112
圖3-27、Graft II與mPEG以動態光散射觀察粒徑變化與水含 量之關係。………………………………………………. 114
圖3-28、Graft II與mPEG以動態光散射觀察PI變化與水含量之關係。…………………………………………………. 115
圖3-29、Graft II copolymer與Block I copolymer之臨界微胞濃度。……………………………………………………… 116
圖3-30、Graft II copolymer與Block II copolymer之臨界微胞濃度。……………………………………………………….. 116
圖3-31、Graft II與Block I以動態光散射觀察粒徑變化與水含量之關係。………………………………………………. 118
圖3-32、Graft II與Block I以動態光散射觀察PI變化與水含量之關係。…………………………………………………. 119
圖3-33、Graft II與Block I形成複合型奈米微胞之形成機制示意圖。…………………………………………………… 120
圖3-34、複合型微胞之Molecular weight。………………………. 121
圖3-35、不同混合比例之Graft II與Block II複合型奈米微胞懸浮於D2O之1H- NMR光譜圖。……………………….. 123
圖3-36、不同混合比例之Graft II與Block II複合型奈米微胞溶解於DMSO-d6之1H- NMR光譜圖。…………………. 124

圖3-37、不同混合比例之DMSO/DMF對複合型奈米微胞粒徑與粒徑分佈之影響。(Mixed I: Graft I with Block I;Mixed II: Graft II with Block II)…………………………


126
圖3-38、Graft I copolymer與Block I及Block II copolymers在 不同混合比例下之粒徑大小與粒徑分佈。…………….. 127
圖3-39、Graft I copolymer與Block I及Block II copolymers在 不同混合比例下之界面電位。…………………………. 128
圖3-40、Graft II copolymer與Block I及Block II copolymers在不同混合比例下之粒徑大小與粒徑分佈。……………. 129
圖3-41、Graft II copolymer與Block I及Block II copolymers在不同混合比例下之界面電位。…………………………. 130
圖3-42、三成份複合型奈米微胞在不同Block III混合比例下之粒徑大小與粒徑分佈。…………………………………. 132
圖3-43、三成份複合型奈米微胞在不同Block III混合比例下之界面電位。………………………………………………. 132
圖3-44、Graft II與Block III之臨界微胞濃度。………………… 133
圖3-45、Graft II、Block II與Block III之臨界微胞濃度。…….. 133
圖3-46、Graft II、Block I與Block III以動態光散射觀察粒徑變化與水含量之關係。……………………………………. 135
圖3-47、Graft II、Block I與Block III以動態光散射觀察PI變化與水含量之關係。…………………………………… 135
圖3-48、Graft II、Block II與Block III以動態光散射觀察粒徑變化與水含量之關係。…………………………………. 136
圖3-49、Graft II、Block II與Block III以動態光散射觀察PI變化與水含量之關係。…………………………………… 137
圖3-50、三組成高分子共聚合物形成複合型奈米微胞之形成機制示意圖。……………………………………………… 138
圖3-51、複合型微胞之Molecular weight。……………………… 139
圖3-52、複合型奈米微胞以2 wt %之uranyl acetate染色之 TEM影像。……………………………………………… 140

圖3-53、Graft II與Block II之複合型奈米微胞AFM影像 (a) 2-D影像 (b) 3-D影像。(Graft II:Block II=0.5:0.5)……

140
圖3-54、Graft II、Block II、與Block III之複合型奈米微胞 AFM影像 (a) 2-D影像 (b) 3-D影像。(Graft II:Block II:Block III =0.45: 0.45:0.1)……………………………... 141
圖3-55、Graft II、Block II、與Block III之複合型奈米微胞 AFM影像 (a) 2-D影像 (b) 3-D影像。(Graft II:Block II:Block III =0.35: 0.35:0.3)……………………………... 141
圖3-56、Graft II、Block II、與Block III之複合型奈米微胞 AFM影像 (a) 2-D影像 (b) 3-D影像。(Graft II:Block II:Block III= 0.23: 0.23:0.54)……………………………. 142

第四部份 複合型奈米微胞於癌症治療之應用
圖1-1、複合型奈米微胞於細胞內藥物傳遞示意圖。…………… 148
圖3-1、複合型奈米微胞於不同酸鹼環境下之粒徑變化。……… 158
圖3-2、1H-NMR觀察複合型奈米微胞於不同酸鹼環境下其外殼結構變化情形。………………………………………….. 159
圖3-3、複合型奈米微胞與Graft I微胞之 (a) 粒徑大小與 (b) 界面電位。………………………………………………… 160
圖3-4、Graft I微胞之AFM影像 (a) 2-D影像 (b) 3-D影像。… 161
圖3-5、複合型奈米微胞之AFM影像 (a) 2-D影像 (b) 3-D影 像。………………………………………………………… 161
圖3-6、複合型奈米微胞與Graft I微胞懸浮於D2O中之1H- NMR圖譜。……………………………………………… 162
圖3-7、複合型奈米微胞與Graft I微胞溶解於DMSO-d6中之1H-NMR圖譜。…………………………………………… 163
圖3-8、複合型奈米微胞於不同酸鹼環境下之相轉移變化。…… 164
圖3-9、複合型奈米微胞於pH 5.0 D2O中之相轉移變化。…….. 165
圖3-10、複合型奈米微胞在不同pH值環境下pyrene分子之I1 / I3隨溫度改變之變化情形。……………………………… 167

圖3-11、複合型奈米微胞之free base Dox藥物包覆率與水含量之關係。…………………………………………………..

169
圖3-12、複合型奈米藥物微胞之AFM影像 (a) 2-D影像 (b) 3-D影像。………………………………………………… 170
圖3-13、Graft I藥物微胞之AFM影像 (a) 2-D影像 (b) 3-D影像。……………………………………………………….. 170
圖3-14、複合型奈米微胞在不同pH值環境下之藥物釋放行為。. 173
圖3-15、Graft I微胞在不同pH值環境下之藥物釋放行為。….. 173
圖3-16、複合型奈米藥物微胞、Graft I藥物微胞與Dox•HCl在48小時HeLa細胞毒殺情形。………………………….. 175
圖3-17、複合型奈米微胞與Graft I微胞在48小時HeLa細胞毒殺情形。…………………………………………………. 176
圖3-18、複合型奈米藥物微胞與Graft I藥物微胞在48小時對HepG2細胞毒殺評估。…………………………………..
177
圖3-19、複合型奈米微胞與Graft I微胞於5 wt.%之BSA生理食鹽水(PBS)中穩定性測試。…………………………… 178
圖3-20、Dox•HCl及LysoTracker與人類肝癌HepG2細胞共同培養1小時與8小時後之分佈情形。…………………. 180
圖3-21、複合型奈米藥物微胞及LysoTracker與人類肝癌 HepG2細胞共同培養1小時與8小時後之分佈情形。.. 181
圖3-22、複合型奈米藥物微胞及LysoTracker與人類子宮頸癌HeLa細胞共同培養1小時與6小時後之分佈情形。… 183
圖3-23、複合型奈米藥物微胞於中國倉鼠細胞CHO-K1細胞共同培養1小時與6小時後之藥物分佈情形。…………. 184
圖3-24、複合型奈米藥物微胞於中國肺癌細胞CL3細胞於不同時間共同培養下之藥物分佈情形。…………………….. 184



表 目 錄


第二部份 具溫度應答與酸鹼應答高分子奈米微胞之研發及其在細胞內藥物傳輸之應用
表3-1、接枝共聚合物PLA-g-P(NIPAAm-co-MAAc)之組成比。. 49
表3-2、接枝共聚合物PLA-g-P(NIPAAm-co-MAAc)之性質分 析。……………………………………………………….. 49
表3-3、不同組成比之雙性共聚物對奈米微胞粒徑之影響。….. 51
表3-4、奈米微胞之低溫臨界溶液溫度(LCST)。………………… 54

第三部份 以接枝共聚合物與團聯共聚合物於複合型奈米微胞之研發
表3-1、接枝共聚合物PLA-g-P(NIPAAm-co-MAAc)之組成比。. 86
表3-2、接枝共聚合物PLA-g-P(NIPAAm-co-MAAc)之性質分 析。……………………………………………………….. 86
表3-3、團聯共聚合物mPEG-PLA之組成與性質分析。………. 88
表3-4、團聯共聚合物PEOz-PLA之組成與性質分析。……….. 92
表3-5、各種共聚合物之臨界微胞濃度。……………………….. 94
1. C.J.T. Hoes, J. Grootoonk, J. Feijen, P.J. Boon, F. Kaspersen, J. Controlled Release 1992, 19, 59.
2. C.J.T. Hoes, J. Grootoonk, R. Duncan, J. Feijen, J. Controlled Release 1993, 23, 37.
3. R. Duncan, H.C. Cable, J.B. Lloyd, P. Rejmanova, J. Kopecek, Bioscience Reports 1982, 2, 1041.
4. Y. Sadzuka, S. Nakai, A. Miyagishima, Y. Nozawa, S. Hirota, Cancer Letters 1997, 111, 77.
5. K. Uchiyama, A. Nagayasu, Y. Yamagiwa, T. Nishida, H. Harashima, International Journal of Pharmaceutics 1995, 121, 195.
6. Y. Sadzuka, S. Hirota, Cancer Letters 1998, 131, 163.
7. X.R. Qi, Y. Maitani, T. Nagai, S.L. Wei, International Journal of Pharmaceutics 1997, 146, 31.
8. J.C. Leroux, E. Allémann, F. De Jaeghere, E. Doelker, R. Gurny, J. Controlled Release 1996, 39, 339.
9. Targeting cancer with nanoparticles, Materials Today 2002, 5(11), 12.
10. I. Brigger, C. Dubernet, P. Couvreur, Adv. Drug Deliv. Rev. 2002, 54, 631.
11. R.K. Jain, Cancer Res. 1987, 47, 3039.
12. R.K. Jain, J. Controlled Release 2001, 74, 7.
13. A. Chilkoti, R. Dreher, E. Meyer, D. Raucher, Adv. Drug Deliv. Rev. 2002, 54, 613.
14. X. Gao, Y. Cui, M. Levenson, W.K. Chung, S. Nie, Nat. Biotechnol. 2004, 22, 969.
15. R.K. Jain, J. Controlled Release 2001, 74, 7.
16. H. Maeda, J. Wu, T. Sawa, Y. Matsumura, K. Hori, J. Controlled Release 2000, 65, 271.
17. R. Duncan, Pharmaceutical Science & Technology Today 1999, 2, 441.
18. R. Duncan, Nat. Rev. Drug Discovery 2003, 2, 347.
19. R. Gillies, J.M.J. Frechet, Bioconjugate Chem. 2005, 16, 361.
20. H.S. Yoo, E.A. Lee, T.G. Park, J. Controlled Release 2002, 82, 17.
21. S.H. Kim, J.H. Jeong, K.W. Chun, T.G. Park, Langmuir 2005, 21, 8852.
22. N. Murthy, J. Campbell, N. Fausto, A.S. Hoffman, P.S. Stayton, Bioconjugate Chem. 2003, 14(2), 412.
23. C.L. Lo, K.M. Lin, G.H. Hsiue, J. Controlled Release 2005, 104, 477.
24. J. Kopecek, J. Controlled Release 1990, 11, 279.
25. V. Omelyanenko, P. Kopeckova, C. Gentry, J. Kopecek, J. Controlled Release 1998, 53, 25.
26. Y. Lee, H. Koo, G.W. Jin, H. Mo, M.Y. Cho, J.Y. Park, J.S. Choi, J.S. Park, Biomacromolecules 2005, 6(1), 24.
27. C.M. Paleos, D. Tsiourvas, Z. Sideratou, L. Tziveleka, Biomacromolecules 2004, 5(2), 524.
28. D. Putnam, J. Kopecek, Adv. Polym. Sci. 1994, 122, 55.
29. R. Duncan, Selective endocytosis, In V. H. Lee (ed.), Sustained and Controlled Drug Delivery, Marcel Dekker, New York, 1986, 581.
30. C.J.T. Hoes, J. Feijen, Makromol Chem. 1993, 70, 119.
31. J. Heuser, L. Evans, J. Cell Biol. 1980, 84, 560.
32. I. Pastan, M.C. Willingham, D.J.P. FitzGerald, Cell 1986, 47, 641.
33. R.G.W. Anderson, J.R. Falck, J.L. Goldstein, M.S. Brown, Proc. Natl. Acad. Sci. USA, 1984, 81, 4838.
34. B. Rihova, Adv. Drug Deliv. Rev. 1998, 29, 273.
35. C.E. Soma, C. Dubernet, G. Barratt, S. Benita, P. Couvreur, J. Controlled Release 2000, 68, 283.
36. S. Stolnik, L. Illum, S.S. Davis, Adv. Drug Deliv. Rev. 1995, 16, 195.
37. R. Gref, Y. Minamitake, M.T. Peracchia, V. Trubetskoy, V. Torchilin, R. Langer, Science 1994, 263, 1600.
38. T. Yamaoka, Y. Tabata, Y. Ikada, J. Pharm. Sci. 1994, 83, 601.
39. N.B. Graham, M. Zulfiqar, Polymer 1989, 30, 2130.
40. U. Gaur, S.K. Sahoo, K. De Tapas, P.C. Ghosh, A. Maitra, P.K. Ghosh, International Journal of Pharmaceutics 2000, 202, 1.
41. K.B. O’Hare, I.C. Hume, L. Scarlett, V. Chytry, P. Kopeckova, J. Kopecek, R. Duncan, Hepatology 1989, 10(2), 207.
42. M. Yakoyama, S. Lnoue, K. Kataoka, N. Yui, Y. Sakurai, Makromol. Chem., Rapid Commun. 1987, 8, 431.
43. M. Yakoyama, M. Miyauchi, M. Yamada, T. Okano, Y. Sakurai, K. Kataoka, Cancer Res. 1990, 50, 1693.
44. M. Yakoyama, M. Miyauchi, M. Yamada, T. Okano, Y. Sakurai, K. Kataoka, S. Lnoue, J. Controlled Release 1990, 11, 269.
45. T. Nakanishi, S. Fukushima, K. Okamoto, M. Suzuki, Y. Matsumura, M. Yakoyama, T. Okano, Y. Sakurai, K. Kataoka, J. Controlled Release 2001, 74, 295.
46. M. Jelinkova, J. Strohalm, D. Plocova, V. Subr, M. St’astny, K. Ulbrich, B. Rihova, J. Controlled Release 1998, 52, 253.
47. C.J.T. Hoes, J. Grootoonk, J. Feijen, P.J. Boon, F. Kaspersen, P. Loeffen, I. Schlachter, M. Winters, E.S. Bos, J. Controlled Release 1992, 19, 59.
48. T. Ichihara, K. Sakamoto, K. Mori, M. Akagi, Cancer Res. 1989, 49, 4357.
49. J. Wang, L.S. Li, Y.L. Feng, H.M. Yao, X.H. Wang, Chin. Med. J. 1993, 106, 441.
50. V.G. Roullin, J.R. Deverre, L. Lemaire, F. Hindre, M.C. Venier-Julienne, R. Vienet, J.P. Benoit, Euro. J. Pharm. Biopharm. 2002, 53, 293.
51. H.S. Yoo, K.H. Lee, J.E. Oh, T.G. Park, J. Controlled Release 2000, 68, 419.
52. L. Liu, C.X. Li, X.C. Li, Z. Yuan, Y.L. An, B.L. He, J. appl. Polym.Sci. 2001, 80, 1976.
53. J.E. Chung, M. Yokoyama, K. Suzuki, T. Aoyagi, Y. Sakurai, T. Okano, Colloids and Surfaces (B: Biointerfaces) 1997, 9, 37.
54. Y. Qiu, K. Park, Adv. Drug Deliv. Rev. 2001, 53, 321.
55. S. Cammas, K. Suzuki, C. Sone, Y. Sakurai, K. Kataoka, T. Okano, J. Controlled Release 1997, 48, 157.
56. F. Kohori, K. Skai, T. Aoyagi, M. Yokoyama, Y. Sakurai, T. Okano, J. Controlled Release 1998, 55, 87.
57. J.E. Chung, M. Yokoyama, T. Okano, J. Controlled Release 2000, 65, 93.
58. M.D.C. Topp, P.J. Dijkstra, H. Talsma, J. Feijen, Macromolecules 1997, 30, 8518.
59. S. Cammas-Marion, T. Okano, K. Kataoka, Colloids and Surfaces (B: Biointerfaces) 1999, 16, 207.
60. D. Dube, M. Francis, J.C. Leroux, F.M. Winnik, Bioconjugate Chem. 2002, 13, 685.
61. Y. Bae, S. Fukushima, A. Harada, K. Kataoka, Angew. Chem. Int. Ed. 2003, 42, 4640.
62. Y. Bae, N. Nishiyama, S. Fukushima, H. Koyama, M. Yasuhito, K. Kataoka, Bioconjugate Chem. 2005, 16, 121.
63. E.R. Gillies, T.B. Jonsson, J.M.J. Frechet, J. Am. Chem. Soc. 2004, 126, 11936.
64. C. C. Lee, M. Yoshida, J.M.J. Frechet, E.E. Dy, F.C. Szoka, Bioconjugate Chem. 2005, 16, 535.
65. S. Soppimath, C.W. Tan, Y.Y. Yand, Adv. Matter. 2005, 17, 318.
66. E.S. Lee, K. Na, Y.H. Bae, Nano Lett. 2005, 5, 325.
67. M.C. Jones, J.C. Leroux, Eur. J. Pharm. Biopharm. 1999, 48, 101.
68. P.H. Elworthy, A.T. Florence, C.B. Macfarlane (Ed.), Solubilization by Surface Active Agents, Chapman and Hall, London, UK, 1968.
69. Z. Gao, A. Eisenberg, Macromolecules 1993, 26, 7353.
70. F.M. Winnik, A.R. Davidson, G.K. Hamer, H. Kitano, Macromolecules 1992, 25, 1876.
71. S. Cammas, K. Suzuki, C. Sone, Y. Sakurai, K. Kataoka, T. Okano, J. Controlled Release 1997, 48, 157.
72. G.S. Kwon, M. Yokoyama, T. Okano, Y. Sakurai, K. Kataoka, Pharm. Res. 1993, 10, 970.
73. G. Kwon, M. Naito, M. Yokoyama, T. Okano, Y. Sakurai, K. Kataoka, Langmuir 1993, 9, 945.
74. R. Nagarajan, K. Ganesh, Macromolecules 1989, 22, 4312.
75. P. Alexandridis, J.F. Holzwarth, T.A. Hatton, Macromolecules 1994, 27, 2414.
76. P. Alexandridis, V. Athanassiou, S. Fuluda, T.A. Hatton, Langmuir 1994, 10, 2604.
77. J. Boada, M. Gallardo, M.A. Alsina, J. Estelrich, Colloids and Surfaces A: Physicochem. Eng. Aspects 2001, 182, 191.
78. J. Shin, P. Shum, D. H. Thompson, J. Controlled Release 2003, 91, 187.
79. N. Guptaa, A.A. Patela, R. Nassarb, Y.M. Lvovc, M.J. McShaned, J.D. Palmera, Colloids and Surfaces A: Physicochem. Eng. Aspects 2004, 245, 137.
80. A.A. Yaroslavov, V.Y. Klu’kov, A.A. Efimova, M.O. Ignatiev, Thin Solid Films 1995, 265, 66.
81. J.C. Kim, J.D. Kim, Colloids and Surfaces B: Biointerfaces 2002, 24, 45.
82. J.C. Leroux, E. Roux, D.L. Garrec, K. Hong, D.C. Drummond, J. Controlled Release 2001, 72, 71.
83. A. Harada, K. Kataoka, Science 1999, 283, 65.
84. E.A. Lysenko, P.S. Chelushkin, T.K. Bronich, A. Eisenberg, V.A. Kabanov, A.V. Kabanov, J. Phys. Chem. B 2004, 108, 12352.
85. E.S. Lee, K. Na, Y.H. Bae, J. Controlled Release 2003, 91, 103.
86. P. Cai, C. Wang, J. Ye, Z. Xie, C. Wu, Macromolecules 2004, 37, 3438.
87. T.M. Allen, A. Chonn, FEBS Lett. 1987, 223, 42.
88. A. Gabizon, D. Papahadjopoulous, Proc. Natl. Acad. Sci. USA 1988, 85, 6964.
89. G. Blume, G. Cevc, Biochim. Biophys. Acta. 1990, 1029, 91.
90. D. Papahadjopoulous, T.M. Allen, A. Gabizon, E. Mayhew, S.K. Huang, K.D. Lee, M.C. Woodle, D.D. Lasic, C. Redemann, F.J. Martin, Proc. Natl. Acad. Sci. USA 1991, 88, 11460.
91. T.M. Allen, J. Liposome Res. 1992, 2, 289.
92. A.L. Klibanov, K. Maruyama, V.P. Torchilin, L. Huang, FEBS Lett. 1990, 268, 235.
93. A. Mori, A.L. Klibanov, V.P. Torchilin, L. Huang, FEBS Lett. 1991, 284, 263.
94. G.L. Scherphof, H. Morselt, T.M. Allen, J. Liposome Res. 1994, 4, 213.
95. T.M. Allen, C. Hansen, F. Martin, C. Redemann, A. Yau-Young, Biochim. Biophys. Acta. 1991, 1066, 29.
96. P. A. Sivakumar, K. Panduranga Rao, Reactive & Functional Polymers 2001, 49, 179.
97. A. Kim, M.O. Yun, Y.K. Oh, W.S. Ahn, C.K. Kim, International Journal of Pharmaceutics 1999, 180, 75.
98. C. Managit, S. Kawakami, M. Nishikawa, F. Yamashita, M. Hashida, International Journal of Pharmaceutics 2003, 266, 77.
99. J. Boada, M. Gallardo, M.A. Alsina, J. Estelrich, Colloids and Surfaces A: Physicochemical and Engineering Aspects 2001, 182, 191.
100. H. Takeuchi, H. Kojima, H. Yamamoto, Y. Kawashima, J. Controlled Release 2001, 75, 83.
101. J. Shin, P. Shum, D.H. Thompson, J. Controlled Release 2003, 91, 187.
102. H. Takeuchi, H. Yamamoto, T. Toyoda, H. Toyobuku, T. Hino, Y. Kawashima, International Journal of Pharmaceutics 1998, 164, 103.
103. H. Takeuchi, H. Kojima, T. Toyoda, H. Yamamoto, T. Hino, Y. Kawashima, European Journal of Pharmaceutics and Biopharmaceutics 1999, 48, 123.
104. J. Guo, Q. Ping, G. Jiang, L. Huang, Y. Tong, International Journal of Pharmaceutics 2003, 260, 167.
105. I. Henriksen, S.R. Vågen, S.A. Sande, G. Smistad, J. Karlsen, Internation Journal of Pharmaceutics 1997, 146, 193.
106. V.A. Kabanov, A.A. Yaroslavov, J. Controlled Release 2002, 78, 267.
107. N. Guptaa, A.A. Patela, R. Nassarb, Y.M. Lvovc, M.J. McShaned, J.D. Palmera, Colloids and Surfaces A: Physicochem. Eng. Aspects 2004, 245, 137.
108. A.A. Yaroslavov, V.Y. Klu’kov, A.A. Efimova, M.O. Ignatiev, Thin Solid Films 1995, 265, 66.
109. T.R. Hui, D.Y. Chen, M. Jiang, Macromolecules 2005, 38, 5834.
110. D.Y. Chen, H.S. Peng, M. Jiang, Macromolecules 2003, 36, 2576.
111. X.M. Yao, D.Y. Chen, M. Jiang, J. Phys. Chem. B 2004, 108, 5225.
112. X.M. Yao, D.Y. Chen, M. Jiang, Macromolecules 2004, 37, 4211.
113. H.S. Peng, D.Y. Chen, M. Jiang, Langmuir 2003, 19, 10989.
114. C. Honda, K. Yamamoto, T. Nose, Polymer 1996, 37, 1975.
115. P. Sens, C.M. Marques, J.F. Joanny, Macromolecules 1996, 29, 4880.
116. Z. Yang, Y.W. Yang, Z. Zhou, D. Attwood, C. Booth, J. Chem. Soc., Faraday Trans. 1996, 92(2), 257.
117. T. Liu, V.M. Nace, B. Chu, Langmuir 1999, 15, 3109.
118. M. Štêpánek, K. Podhajecka, E. Tesarova, K. Prochazka, Langmuir 1999, 17, 4240.
119. M. Štêpánek, K. Podhajecka, K. Prochazka, Langmuir 1999, 17, 4245.
120. S. Dia, P. Ravi, C.Y. Leong, K.C. Tam, L.H. Gan, Langmuir 2004, 20, 1579.
121. G. Chen, A.S. Hoffman, Nature 1995, 373, 49.
122. C.S. Brazel, N.A. Peppas, J. Controlled Release 1996, 39, 57.
123. C.L. Zhao, M.A. Winnik, G. Riess, M.D. Croucher, Langmuir 1990, 6, 514.
124. K. Kalyanasundaram, J.K. Thomas, J. Am. Chem. Soc. 1997, 99, 2039.
125. Z. Gan, T.F. Jim, M. Li, Z. Yuer, S. Wang, C. Wu, Macromolecules 1999, 32, 590.
126. L. Bromberg, E. Magner, Langmuir 1999, 15, 6792.
127. K. Yu, A. Eisenberg, Macromolecules 1996, 29, 6359.
128. K. Kataoka, G. S. Kwon, M. Yokoyama, T. Okano, Y. Sakurai, J. Controlled Release 1993, 24, 119.
129. R. Gref, Y. Minamitake, M. T. Peracchia, V. Trubetskoy, V. Torchilin, R. Langer, Science 1994, 263, 1600.
130. J. M. J. Frechet, Science 1994, 243, 1710.
131. V. Percec, C. H. Ahn, G. Ungar, D. J. P. Yeardley, M. Moller, S. S. Sheiko, Nature 1998, 391, 161.
132. D. E. Discher, A. Eisenberg, Science 2002, 297, 967.
133. G. B. Webber, E. J. Wanless, S. P. Armes, Y. Tang, Y. Li, S. Biggs, Adv. Mater. 2004, 16, 1794.
134. F. Liu, A. Eisenberg, J. Am. Chem. Soc. 2003, 125, 15059.
135. S. Liu, S. P. Armes, Angew. Chem. Int. Ed. 2002, 41, 1413.
136. J. Noolandi, K.M. Hong, Macromolecules 1982, 15, 482.
137. J. Noolandi, K.M. Hong, Macromolecules 1983, 16, 1443.
138. M.D. Whitmore, J. Noolandi, Macromolecules 1985, 18, 657.
139. L. Leibler, H. Orland, J.C. Wheeler, J. Chem. Phys. 1983, 79, 3550.
140. A. Halperin, Macromolecules 1987, 20, 2943.
141. R. Xu, M.A. Winnik, G. Riess, B. Chu, M.D. Croucher, Macromolecules 1987, 20, 2943.
142. N.P. Balsara, M. Tirrel, T.P. Lodge, Macromolecules 1991, 24, 1975.
143. Y. Wang, W.L. Mattice, Langmuir 1993, 9, 66.
144. I. Astafieva, X.F. Zhong, A. Eisenberg, Macromolecules 1993, 26, 7339.
145. Z. Gao, A. Eisenberg, Macromolecules 1993, 26, 7353.
146. V.V. Khutoryanskiy, A.V. Dubolazov, Z.S. Nurkeeva, G.A. Mun, Langmuir 2004, 20, 3785.
147. A.K. Ho, L.E. Bromberg, P.D.T. Huibers, A.J. O’Connor, J.M. Perera, G.W. Stevens, T.A. Hatton, Langmuir 2002, 18, 3005.
148. S.A. Sukhishvili, S. Granick, Macromolecules 2002, 35(1), 301.
149. S. Cammas, K. Suzuki, C. Sone, Y. Sakurai, K. Kataoka, T. Okano, J. Controlled Release 1997, 48, 157.
150. S.B. La, T. Okano, K. Kataoka, J. Pharm. Sci. 1996, 85, 85.
151. M. Yokoyama, CRC Crit. Rev. Ther. Drug Carrier Syst. 1992, 9, 213.
152. F.M. Winnik, A.R. Davidson, G.K. Hamer, H. Kitano, Macromolecules 1992, 25, 1876.
153. M. Yokoyama, T. Okano, Y. Sakurai, K. Kataoka, J. Controlled Release 1994, 32, 269.
154. C. Koňák, M. Helmstedt, Macromolecules 2003, 36, 4603.
155. G. Cheng, A. Böker, M. Zhang, G. Krausch, A.H.E. Müller, Macromolecules 2001, 34, 6883.
156. M.C. Jones, M. Ranger, J.C. Leroux, Bioconjugate Chem. 2003, 14, 774.
157. L. Luo, M. Ranger, D.G. Lessard, D.L. Garrec, S. Gori, J.C. Leroux, S. Rimmer, D. Smith, Macromolecules 2004, 37, 4008.
158. S.Y. Kim, I.G. Shin, Y.M. Lee, C.S. Cho, Y.K. Sung, J. Controlled Release 1998, 51, 13.
159. R. Nagarajan, K. Ganesh, J. Chem. Phys. 1989, 90, 5843.
160. C.F. Landes, S. Link, M.B. Mohamed, B. Nikoobakht, M.A. EI-Sayed, Pure Appl. Chem. 2002, 74(9), 1675.
161. W.Y. Siu, A. Lau, T. Arooz, J.P.H. Chow, H.T.B. Ho, R.Y.C. Poon, Mol. Cnacer Ther. 2004, 3(5), 621.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔