跳到主要內容

臺灣博碩士論文加值系統

(98.82.120.188) 您好!臺灣時間:2024/09/20 09:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:許雯琪
研究生(外文):Wen-Chi Hsu
論文名稱:無電鍍鎳合金於薄膜電晶體顯示器閘極陣列之銅製程研究
論文名稱(外文):Electroless Nickel-based Alloy Films Applied to Gate Electrode of TFT-LCD
指導教授:萬其超萬其超引用關係王詠雲
指導教授(外文):Chi-Chao WanYung-Yun Wang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:85
中文關鍵詞:無電鍍薄膜電晶體顯示器閘極陣列銅製程
相關次數:
  • 被引用被引用:0
  • 點閱點閱:373
  • 評分評分:
  • 下載下載:76
  • 收藏至我的研究室書目清單書目收藏:1
本論文以無電鍍法製備NiWMoB 做為覆蓋層。使用DMAB 當作還原劑及硼的來源,採用此種還原劑,不需先經鈀活化步驟可直接在銅面上還原。實驗中觀察到鍍率的關係為NiWB>NiWMoB>NiMoB。從鍍層鍍率以及鍍層組成的結果推測出W和Mo彼此為競爭關係。以掃描式電子顯微鏡觀察此三種鍍層,含有W的鍍層呈現含有較大晶粒的型態;而含有Mo的鍍層則是較小的晶粒存在。同時,再以X光粉末繞射儀觀察結晶型態,除了NiWB呈現明顯Ni的結晶,其餘的NiMoB或者是NiWMoB的結晶都比較偏奈米晶相,從半高寬值的關係推測晶粒的相對大小,此趨勢和掃描式電子顯微鏡的觀察符合。經由退火之後,觀察晶相的變化,NiWB會出現Ni3B的不穩定相,然而NiMoB或是NiWMoB則無其他不穩定相的產生。取[Na2WO4]/ [Na2MoO4] =1 ([Na2MoO4]:0.003M)製備NiWMoB,可以避免製備NiMoB會遇到鉬酸根吸附的問題,NiWMoB的熱穩定性也比NiWB良好,此條件下,晶粒尺寸小而且分布均勻。在此條件下,改變還原劑、錯合劑的濃度及氨水含量,藉以調整鍍層組成。討論這幾種不同組成中,硼含量對晶體結構以及防止銅的擴散的影響。從實驗結果,硼的含量越高的確可以防止銅的擴散。最後,以X光電子能譜儀分別觀察Ni、W、Mo及B在NiWMoB鍍層中以何種化學態存在。藉此我們發現Mo的化學態由於W的存在而受到影響,與其單獨存在時的化學態有所不同。
This study is to develop NiWMoB capping layer via electroless deposition. DMAB (dimethylamine borane) was chosen as the reducing agent due to its unique ability of selective deposition on copper surface without prior activation by Pd. In this study, various film compositions were fabricated, and their performance as capping layers were studied. The deposition rate reflects the relation: NiWB>NiWMoB>NiMoB. From the relation of deposition rate and the composition of the NiWMoB film, the introduction of both W and Mo leads to parallel competition in the reaction. The SEM photos reveal that deposits comprising W induces large grain size. On the other hand, the films consisting of amounts of Mo leads to small grain size. Based on the XRD patterns, the NiMoB or NiWMoB shows better thermal stability than NiWB films since no new phase appears after heat treatment with NiMoB or NiWMoB film. The NiWMoB films have superior thermal stability compared to NiWB films, and the addition of tungsten to NiMoB suppresses the adsorption of MoO42- on the catalytic surface, shortening the operating time. Under the condition of [Na2WO4]/ [Na2MoO4] =1 ([Na2MoO4]:0.003M), the morphology of the NiWMoB film presents uniform small grain and XRD data show nanocrystalline structure and sufficient thermal stability for NiWMoB deposits, rendering it a promising candidate as capping layer. The observation of Cu diffusion was evaluated by the depth profile. The results show that high-boron sample has no Cu diffusion, but low-boron sample has a little Cu diffusion. By utilizing XPS technique, the chemical states of Mo in the NiWMoB film were found affected by the addition of W.
Abstract Ⅰ
摘要 Ⅱ
Table of Content Ⅲ
List of Figures Ⅵ
List of Tables -Ⅸ

Chapter 1 Introduction 1
1.1 Introduction 1
1.2 TFT-Array Fabrication Process 4
1.3 Copper-Based TFT Fabrication Technology 6
1.4 Classification of Diffusion Barrier/Capping Layer 6
1.5 Barrier Materials 9
1.6 Barrier/Capping Deposition Technologies 10
Chapter 2 Literature Review 11
2.1 Self-passivated copper gates for amorphous silicon thin-film transistors 11
2.2 Passivation of Cu(Mg) alloy films 12
2.3 Copper gate on hydrogenated amorphous silicon TFT with thin buffer layers 16
2.4 Electroless nickel based barrier/capping layers 17
2.4.1 Ni-W-P films 17
2.4.2 Ni-Mo-P films 18
2.4.3 Ni-W-B films 21
2.4.4 Ni-Mo-B films 27

2.5 The microstructure of effective electroless capping/ barrier layer 29
2.6 The objectives of this research 30
Chapter 3 Experiment 32
3.1 Substrate pretreatment 32
3.2 Electroless deposition of NiWB, NiMoB, and NiWMoB films 33
3.3 Process of annealing 35
3.4 Characterization and measurement 35
3.4.1 Surface morphology and composition analysis 35
3.4.2 Film thickness measurement 36
3.4.3 Crystal structure identification 36
3.4.4 Depth Profile 37
3.4.5 XPS analysis 37
Chapter 4 Results and Discussion 39
4.1 Composition of the electroless deposits 39
4.2 Deposition rate of NiWB, NiMoB, and NiWMoB films 45
4.3 Morphology 49
4.4 Crystalline structure 51
4.5 Effect of thermal treatment on crystalline structure and morphology 55
4.6 Effects of deposited parameters on NiWMoB films 60
4.6.1 Effects of operation parameters 61
[DMAB] Effect 61
Concentration of Sodium Citrate Effect 63
Ammonia Effect 65
4.6.2 Effect of Boron content on the structure and property of NiWMoB films 67
4.7 Analyze XPS spectrum 73
Chapter 5 Conclusion 78
Chapter 6 Future Work 81
Chapter 7 Reference 82
1. H. Kawamoto, Proceedings of the IEEE, 90, 460 (2002).
2. N. Ibaraki, Materials Chemistry and Physics, 43, 220(1996).
3. Y. Uozumi, Proceedings of the International Display Manufacturing Conference 2005, 116 (2005).
4. S. W. Lee, K. S. Cho, B. K. Choo and J. Jang, IEEE Electron Device Letters, 23, 324(2002).
5. 顧鴻壽等合編, 平面面板顯示器基本概論(2004).
6. Y. S. Hwang, G. C. Jo, G. S. Chae and I. J. Chung, Proceedings of the International Display Manufacturing Conference 2003, 437 (2003).
7. P. S. Shih, T. C. Chang, S. M. Chen, M. S. Feng, D. Z. Peng and C. Y. Chang, Surface and Coatings Technology, 108-109, 588 (1998).
8. M. A. Nicolet, Thin Solid Films, 52, 415 (1978).
9. Y. Shacham-Diamand, Journal of Electronic Materials, 30, 336 (2001).
10. T. Osaka, N. Takano, T. Kurokawa, T. Kaneko and K. Ueno, Journal of the Electrochemical Society, 149, C573 (2002).
11. A. Brenner, Journal of Research National Bar, Standard, 37, 1 (1946).
12. H. Sirringhaus, S. D. Theiss, A. Kahn and S. Wagner, IEEE Electron Device Letters, 18, 388 (1997).
13. W. H. Lee, H. Cho, B. Cho, J. Kim, Y. S. Kim, W. G. Jung, H. Kwon, J. Lee, P. J. Reucroft, C. Lee and J. Lee, Journal of the Electrochemical Society, 147, 3066 (2000).
14. H. J. Yang, Y. K. Ko, J. Jang, H. S. Soh, G. S. Chae, H. N. Hong and J. G. Lee, Journal of Electronic Materials, 33, 780 (2004).
15. E. Valova, S. Armyanov, A. Franquet, K. Petrov, D. Kovacheva, J. Dille, J. –L. Delplancke, A. Hubin, O. Steenhaut and J. Vereecken, Journal of the Electrochemical Society, 151, C385 (2004).
16. M. M. Younan and M. Shoeib, Galvanotechnik, 100, 932 (2002).
17. Y. Y. Tsai, F. B. Wu, Y. I. Chen, P. J. Peng, J. G. Duh and S. Y. Tsai, Surface and Coatings Technology, 146-147, 502 (2001).
18. J. N. Balaraju, C. Anandan and K.S. Rajam, Surface Engineering, 21, 215 (2005).
19. S. Y. Chang, Mater Thesis, National Tsing Hua University, HsinChu, Taiwan (2004).
20. G. O. Mallory and T. R. Horhn, Plating and Surface Finishing, 66, 40 (1979).
21. G. Lu and G. Zangari, Journal of the Electrochemical Society, 150, C777 (2003).
22. Y. Wu, Y. Y. Wang and C.C. Wan, Journal of Electronic Materials, 34, 541
(2005).
23. A. B. Drovosekov, M. V. Ivanov, V. M. Krutskikh, E. N. Lubnin and Yu. M. Polukarov, Protection of Metals, 41, 61 (2005).
24. Y. Sverdlov and Y. Shacham-Diamand, Microelectronic Engineering, 70, 512 (2003).
25. H. Nakano, T. Itabashi and H. Akahoshi, Journal of the Electrochemical Society, 152, C163 (2005).
26. Y. Sverdlov, V. Bogush, H. Einati and Y. Shacham-Diamand, Journal of the Electrochemical Society, 152, C631 (2005).
27. T. Osaka, N. Takano, T. Kurokawa, T. Kaneko and K.Ueno, Surface and Coatings Technology, 169-170, 124, (2003).
28. G. O. Mallory and J. B. Hajdu, Electroless Plating: Fundamentals and Applications, America Electroplaters and Surface Finishers Society, Orlando, Ch. 1 (1990).
29. T. Osaka, K. Arai, N. Masubuchi, Y. Yamazaki and T. Namikawa, Japanese Journal of Applied Physics, 28, 866 (1989).
30. M. Yoshino, T. Masuda, S. Wakatsuki, J. Sasano, I. Matsuda, Y. Shacham-Diamand and T. Osaka, 208th Meeting of The Electrochemical Society - Meeting Abstracts, 1152 (2005).
31. A. Kohn, M. Eizenberg, Y. Shacham-Diamand and Y. Sverdlov, Materials Science and Engineering, A302, 18 (2001).
32. I. Koiwa, M. Usuda and T. Osaka, Journal of the Electrochemical Society, 135, 1222 (1988).
33. A. Brenner, Electrodeposition of Alloys, Academic Press, New York, Vol. 2 (1963).
34. E. Valova, S. Armyanov, A. Franquet, A. Hubin, O. Steenhaunt, J-L. Delplancke, and J. Vereecken, Journal of Applied Electrochemistry, 31, 1367 (2001).
35. Sheng-Long Lee and Han-His Liang, Plating and Surface Finishing, 79, 56 (1992).
36. H. Einati, V. Bogush, Y. Sverdlov, Y. Rosenberg and Y. Shacham-Diamand, Microelectronic Engineering, 82, 623 (2005).
37. M. D. Obradovic´, R. M. Stevanovic´, and A. R. Despic, Journal of Electroanalytical Chemistry, 552, 185 (2003).
38. O. Younes and E. Gileadi, Journal of The Electrochemical Society, 149, C100 (2002).
39. A. B. Drovosekov, M. V. Ivanov, V. M. Krutskikh, E. N. Lubnin and Yu. M. Polukarov, Protection of Metals, 41, 451 (2005).
40. T. H. Fleisch and G. J. Mains, Journal of Chemical Physics, 76 (2), 15 (1982).
41. N. Petrov, Y. Sverdlov, and Y. Shacham-Diamand, Journal of the Electrochemistry Society, 149 (4), C187 (2002).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top