跳到主要內容

臺灣博碩士論文加值系統

(98.82.120.188) 您好!臺灣時間:2024/09/20 08:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王俊修
研究生(外文):Chun-Hsiu Wang
論文名稱:以氧化釓添加氧化鈰為擔體擔載鎳和鐵觸媒行甲烷反應後的自身去積碳行為之研究
論文名稱(外文):Study of Self Decoking over Gadolinia-doped Ceria Supported Ni and Fe Catalysts after Methane Reaction
指導教授:黃大仁黃大仁引用關係
指導教授(外文):Ta-Jen Huang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:112
中文關鍵詞:自身去積碳程溫還原甲烷程溫反應氧化釓添加氧化鈰
外文關鍵詞:Self-decokingTPRMethane TPRxGDC
相關次數:
  • 被引用被引用:8
  • 點閱點閱:249
  • 評分評分:
  • 下載下載:39
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要是配合應用於直接甲烷固態氧化物燃料電池(SOFC)的陽極催化機制和模擬導氧離子材料在積碳電池的反應機構。吾人選定Gd2O3-doped CeO2 (GDC)為擔體材料,並含浸鎳或鐵觸媒用以模擬陽極觸媒層。而實驗主要探討SOFC陽極觸媒層和甲烷催化的反應機制,並利用一系列的實驗證明導氧離子材料的傳導氧模式,最後研究探討甲烷反應後的積碳和擔體利用傳導氧的性質來產生自身去積碳的現象。
吾人用共沉澱法讓Gadolinia, Gd2O3添加入CeO2晶格中,利用電荷不平衡的結果來造成氧空洞,而此特殊的缺陷會在晶格表面以及內部都會存在。利用XRD來分析擔體發現,在120℃時即可讓Gd2O3添加入CeO2晶格中,且由BET方法知道在此溫度下具有122.9m2/g的表面積,而隨著煅燒溫度提升表面積會迅速下降。
利用氫氣或一氧化碳程溫還原,以及二氧化碳程溫氧化的手法分析鑑定此具有特殊缺陷的陶瓷材料內部和表面性質。由實驗發現在足夠的溫度內,導氧離子材料內部晶格氧會傳導到氧空位上和反應物反應,而這樣的結果將導致TPR或TPO的反應訊號線不會回虧基線,並且證明晶格氧的傳導將是反應控制的步驟。
由甲烷的程溫反應可以發現: GDC和甲烷的反應活性位發生在GDC的表面氧,而當GDC沒有表面氧存在時,甲烷反應則無法進行,直到溫度升溫至內部晶格氧可以補充至表面時,反應才得以進行。在低溫處甲烷和表面氧作用將多產生二氧化碳;當反應到高溫與內部補充到表面的晶格氧作用時,將多產生一氧化碳。
自身去積碳的實驗發現,在低溫處是多產生二氧化碳,也是因為豐富的表面氧濃度所造成;而當反應到高溫,利用晶格氧的去積碳則多產生一氧化碳,這樣的結果與甲烷的程溫反應吻合。含浸鎳的GDC觸媒具有最佳的自身去積碳效果;而含浸鐵的觸媒具有穩定的去積碳能力,這是由於含浸鐵後,會讓表面具有豐富的表面氧濃度所導致。
水氣的吸附解離實驗發現,含浸鐵的觸媒具有比鎳佳的吸附解離能力,意味了水氣的存在,將比較優先吸附在鐵觸媒
目 錄

第一章.緒論 -------------1
第二章.理論與文獻回顧 -------------4
2-1甲烷的相關反應方程式 -------------4
2-2水氣轉移反應 (WGS) -------------8
2-3導氧離子氧化物與氧空洞擔體 ------------10
2-3.1導氧離子氧化物 ------------10
2-3.2氧空洞擔體 ------------12
2-4積碳去除的方法及其相關研究 ---------------13
2-5積碳─去積碳處理的相關研究 -----------15
2-6觸媒的選擇 ------------19
第三章.實驗方法與步驟 ------------20
3-1實驗藥品 ------------20
3-2製備方法 ------------20
3-2.1擔體製備 ------------20
3-2.2. Ni-Fe/觸媒製備 ------------21
3-3實驗裝置與實驗方法 ------------21
3-3.1.活性測試儀器 ------------21
3-3.2.X-Ray測量 ------------22
3-3.3 BET表面積測試 ------------22
3-3.4程溫還原 ------------23
3-3.5甲烷程溫反應 ------------23
3-3.6自身去積碳的實驗 ------------23
3-3.7二氧化碳程溫氧化實驗 ------------24
3-3.8水氣於觸媒表面解離產生氫氣實驗 ------------25

第四章.實驗結果與討論 ------------29
4-1擔體的X光繞射分析(XRD) ------------29
4-2擔體BET表面積測試 ------------33
4-3程溫還原實驗(TPR) ------------34
4-4證明內部晶格氧往表面氧空缺補充之實驗 ------------41
4-5二氧化碳程溫氧化實驗(CO2-TPO) ------------49
4-6甲烷程溫反應 (CH4-TPRx) ------------52
4-6.1 GDC甲烷程溫反應實驗 ------------52
4-6.2不同溫度還原下的GDC-甲烷程溫反應實驗 ------------55
4-6.3 GDC的甲烷程溫反應機構推導 ------------60
4-6.4 Ni/GDC甲烷程溫反應機構 ------------63
4-6.5甲烷程溫反應的綜合討論與比較 ------------67

4-7自身去積碳(Self-Decoking)實驗 ------------70
4-7.1證明導氧離子材料具有自身去積碳能力之實驗-----------70
4-7.2減少甲烷反應時間對於自身去積碳的影響與探討---------79
4-7.3以60%鎳的觸媒含浸量對於自身去積碳的影響與探討------86
4-7.4 1Ni-0.1Fe/GDC自身去積碳實驗 ------------89
4-7.5導氧離子材料自身去積碳機構 ------------91
4-7.6不同還原溫度對自身去積碳的影響 ------------95
4-8水氣於觸媒表面吸附解離實驗 ----------103

第五章.結論 ----------105

第六章.未來研究方向 ----------107

參考文獻 ----------108
1. R.J. Gorte *、S. Zhao, ” Studies of the water-gas-shift reaction with
ceria-supported precious metals”, Catalysis Today 104 (2005) 18.

2. 林漢君 ”以導氧離子材料擔載鎳觸媒行二氧化碳與甲烷重組反應之研究 ”,清華大學化學工程學系所,碩士論文,民國九十三年。

3. Masayuki Dokiya, “SOFC system and technology”, Solid State Ionics 152 (2002) 383

4.P. Vernoux, M. Guillodo, J. Fouletier, A. Hammou, “Alternative Anode Material for Gradual Methane Reforming in Solid Oxide Fuel Cells”, Solid State Ionics, 135( 2000) 425

5. A. Effendi, K. Hellgardta, Z.-G. Zhang, T. Yoshida, ” Optimising H2 production from model biogas via combined steam reforming and CO shift reactions” Fuel 84 (2005) 869

6.E. G. M. Kuijpers, A. K. Breedijk, W. J. J. van der Wal, and J. W. Geus, “Chemisorption of Methane on Ni/SiO2 Catalysts and Reactivity of the Chemisorption Products Toward Hydrogen, ” J. Catal., 81 (1983) 429 .

7.T.V. Choudhary, D.W. Goodman, “Methane activation on Ni and Ru model catalysts ”J. Molecular Catal. A , 163 (2000) 9

8.Yasuyuki Matsumura, Toshie Nakamori, “Steam reforming of methane over nickel catalysts at low reaction temperature”, Appl. Catal. A: Gen. 258 (2004) 107 .
9. Gary Jacobs, Emilie Chenu, Patricia M. Patterson, Leann Williams,
Dennis Sparks, Gerald Thomas, Burtron H. Davis,” Water-gas shift: comparative screening of metal promoters for metal/ceria systems and role of the metal”, Appl. Catal.A: Gen. 258 (2004) 203
10. X. Wang, R.J. Gorte, ” The effect of Fe and other promoters on the activity ofPd/ceria for the water-gas shift reaction” Applied Catalysis A: General 247 (2003) 157.

11. Y. G. Chen, J. Ren, “Conversion of methane and carbon dioxide into synthesis gas over alumina-supported nickel catalyst, ”Catal. Lett. 29 (1994) 39.

12. K. Tomishige, O. Yamazaki, Y. Chen, K. Yokoyama, X. Li, K. Fujimoto, “Development of ultra-stable Ni catalyst for CO2 reforming of methane, ”Catal. Today, 45 (1998) 35

13. Y. G. Chen, J. Ren, “Conversion of methane and carbon dioxide into synthesis gas over alumina-supported nickel catalyst, ”Catal. Lett. 29 (1994) 39.

14. K. Tomishige, O. Yamazaki, Y. Chen, K. Yokoyama, X. Li, K. Fujimoto, “Development of ultra-stable Ni catalyst for CO2 reforming of methane, ”Catal. Today, 45 (1998) 35

15. J-H. Kim, D. J. Suh, T-J. Park, K-L. Kim “Effect of metal partical size on coking during CO2 reforming of CH4 over Ni-alumina aerogel catalysts, ”Appl. Catal. A 197 (2000) 191

16.T. Horiuchi, K. Sakuma, T. Fukui, Y. Kubo, T. Osaki, T. Mori, “Suppression of carbon deposition in the CO2-reforming of CH4 by adding basic metal oxides to a Ni/Al2O3 catalyst, ”Appl. Catal. A: General, 144 (1996) 111

17.G. Xu, K. Shi, Y. Gao, H. Xu, and Y. Wei “Studies of reforming natural gas with carbon dioxide to produce synthesis gas: X. The role of CeO2 and MgO promoters, ”J. Mole. Catal., 147, 47, (1999).
18. Osamu Yamazaki, “Development of highly stable nickel catalyst for methane-steam reaction under low steam to carbon ratio”, Applied Catalysis A: General 136 (1996) 49

19.Young-Sam Oha, Hyun-Seog Rohb, Ki-Won Junb, ”A highly active catalyst, Ni/Ce–ZrO2/Al2O3, for on-site H2 generation by steam methane reforming: pretreatment effect” , International Journal of Hydrogen Energy 28 (2003) 1387

20.Tatsuya Takeguchi, Yukimune Kani, Tatsuya Yano,” Study on steam reforming of CH4 and C2 hydrocarbons and carbon deposition on Ni-YSZ cermets”, Journal of Power Sources 112 (2002) 595

21.E. Ruckenstein and Y. H. Hu “Carbon dioxide reforming of methane over nickel/alkaline earth metal oxide catalysts, ”Appl. Catal. A,133, 149, (1995).

22.M. C. J. Bardford, M. A. Vannice “Catalytic reforming of methane with carbon dioxide over nickel catalysts: I. Catalyst characterization and activity, ”Appl. Catal. A,142, 73, (1996).

23.J. A. Montoya, E. Romero-Pascual, C. Gimon, P. Del Angel, A. Monzon “Methane reforming with CO2 over Ni/ZrO2-CeO2 catalysts prepared by sol-gel, ”Catal. Today,63, 71, (2000).

24. H. Y. Wang, E. Ruckenstein “Carbon dioxide reforming of methane to methane to synthesis gas over supported rhodium catalysts: the effect of support, ” Appl. Catal. A,204, 143, (2000).

25. S. Sharma, S Hilaire, J. M. Vohs, R. J. Gorte, and H. -W. Jen, “Evidence for Oxidation of Ceria by CO2, ”J. Catal., 190, 199, (2000).

26.Jun-Mei Wei, B.-Q. Xu, J.-L. Li, Z.-X. Cheng, Q.-M. Zhu, “Highly active and stable Ni/ZrO2 catalyst for syngas production by reforming of methane, ”Appl. Catal. A: General, 196, L167, (2000).

27.A. Slagtern, Y. Schuurman, C. Leclercq, X. Verykios, C. Mirodatos, “Specific Features Concerning the Mechanism of Methane Reforming by Carbon Dioxide over Ni/La2O3 Catalyst, ”J. Catal., 172, 118, (1997).

28.M.Ito, T.Tagawa, S.Goto, "Suppression of carbonaceous deposition on nickel catalyst for the carbon dioxide reforming of methane", App.cat.A:Gen.177 (1999) 15

29. E. Ramirez-Cabrera , A. Atkinson , D. Chadwick, “Catalytic steam reforming of methane over Ce0.9Gd0.1O2−x”, App. Catal. B: Environmental 47 (2004) 127

30. Shaowu Zha, Changrong Xia,” Effect of Gd (Sm) doping on
properties of ceria electrolyte for solid oxide fuel cells”, Journal of Power Sources 115 (2003) 44

31. 鞏永謙 ”氧化鈰擔體改質對氧化銅觸媒之還原與催化活性之影響”,清華大學化學工程學系所,碩士論文,民國八十四年。

32. Gerard P. van der Laan, Antonie A.C.M. Beenackers, “Intrinsic kinetics of the gas–solid Fischer–Tropsch and water gas shift
reactions over a precipitated iron catalyst”, Appl. Catal. A: General 193 (2000) 39

33. Sang-Sung Nam, Ho Kim, Gurram Kishan, Myoung-Jae Choi, “Catalytic conversion of carbon dioxide into hydrocarbons over iron
supported on alkali ion-exchanged Y-zeolite catalysts”, Appl.Catal. A: General 179 (1999) 155

34. V.A. Sadykov , T.G. Kuznetsova , ” Ceria-based fluorite-like oxide solid solutions as catalysts of methane selective oxidation into syngas by the lattice oxygen: synthesis, characterization and performance”,
Catal. Today 93 (2004) 45.

35. Ling Qian, Zifeng Yan, “Studies on the Adsorption and Dissociation of Methane and Carbon Dioxide on Nickel Catalysts”, Journal of Natural Gas Chemistry 11(2002)151

36. Nikolaos C. Triantafyllopoulos, “The nature and binding strength of carbon adspecies formed during the equilibrium dissociative adsorption of CH4 on Ni–YSZ cermet catalysts”, Journal of Catalysis 217 (2003) 324

37. Daniel Duprez, “Study of surface reaction mechanisms by 16O/18O and H/D isotopic exchange”, Catalysis Today 112 (2006) 17

38. Yee San Su, Jackie Y. Ying, and William H. Green, Jr. ” Upper bound on the yield for oxidative coupling of methane”, Journal of Catalysis 218 (2003) 321

39. Eleni Heracleous, Angeliki A. Lemonidou, ” Homogeneous and heterogeneous pathways of ethane oxidative and non- oxidative dehydrogenation studied by temperature-programmed reaction”, Applied Catalysis A: General 269 (2004) 123

40. J. H. Bitter, K. Seshan, and J. A. Lercher,” Mono and Bifunctional Pathways of CO2/CH4 Reforming over Pt and Rh Based Catalysts”, Journal of Catalysis 176 (1998) 93
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊