|
1. Adeli, H. and Cheng, N. T. (1994), Augmented lagrangian genetic algorithm for structural optimization, Journal of Aerospace Engineering, 7, 104-118. 2. Alavi, S. and Thompson, D. L. (2004), A molecular-dynamics study of structural and physical properties of nitromethane nanoparticles, Journal of Chemical Physics, 120, 10231-10239. 3. Baker, J. E. (1985), Adaptive selection methods for genetic algorithms, Proceeding of International Conference on Genetic Algorithms, 1, 101-111. 4. Barbosa, H. J. C., Lemonge A. C. C. (2003), A new adaptive penalty scheme for genetic algorithms , Information Sciences, 136, 215.. 5. Battiti, R (1996), Reactive search: toward self-tuning heuristics, In V. J. Rayward-Smith, editor, Modern Heuristic Search Mehods, Jjohn Wiley and Sons . 6. Bursulaya, B. D., Totrov, M., Abagyan, R. and Brooks, C. L. (2003), Comparative study of several algorithms for flexible ligand docking, Journal of Computer-Aided Molecular Design, 17, 755-763. 7. Chen, J. H., Wong, S. H., and Jang, S. S. (1998), Product and process development using artificial neural-network model and information analysis, AIChE Journal, 44, 876-887. 8. Chen, S. L. and Huang, C. (2001), Optimal approximation of linear systems by a differential evolution algorithm, IEEE Trans. Syst., man Cy. A, 21, 698-707. 9. Chipperfield, A. J., Fleming, P. J., Pohlheim H. and Fonseca, C. M. (1994), Genetic Algorithm Toolbox User's Guide, ACSE Research Report No. 512, University of Sheffield, Sheffield, pp. 6-25. 10. Coello, C. A. C. (2000), Use of a self-adaptive penalty approach for engineering optimization problems, Computers in Industry, 41,113-127. 11. Deb, K. (1996), An Efficient constraint handling method for genetic algorithms, Computer Methods in Applied Mechanics and Engineering, 186, 311-338. 12. Deb, K. (2001), Multi-Objective Optimization using Evolutionary Algorithms, Jon Wiley & Sons, Chichester. 13. Floudas, C. A. and Pardalos, P. M. (1990), A collection of test problems for constrained global optimization algorithm, Lecture Note in Computer Science 455, Springer, Berlin, Heidlberg, New York. 14. Floudas, C. A. and Pardalos, P. M. (2000), Optimization in Computational Chemistry and Molecular Biology: Local and Global Approaches, Kluwer Academic Publishers, Boston. 15. Gen, M. and Cheng, R. (1996), A survey of penalty techniques in genetic algorithms, Proceedings of the 1996 International Conference on Evolutionary Computation, IEEE, 804-809. 16. Gen, M. and Cheng, R. (2000), Genetic Algorithms & Engineering Optimization, John Wiley & Sons, New York. 17. Goldberg, D. E. (1989), Genetic algorithms in search optimization, and Machine learning, Addison-Wesley: Reading, M. A. 18. Grossmann I. E., Sargent, W. H. (1979), Optimum design of multipurpose chemical plants, Industrial Engineering Chemistry Process Des. Dev., 18, 343-348. 19. Hatzimanikatis, V, Floudas C. A., Bailey J. E. (1006), Optimization of regulatory architectures in metabolic reaction networks, Biotechnology an Bioengineering, 52, 485-500. 20. Holland J. H. (1975), Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. Ann Arbor: University of Michigan Press. Viii, 183p. 21. Homaifar, A., Lai, S. H. Y. and Qi, X. (1994), Constrained optimization via genetic algorithms, Simulation, 62, 242-254. 22. Joines, J. and Houck, C. (1994), On the use of non-stationary penalty functions to solve non-linear constrained optimization problems with Gas, Proceedings of the First IEEE International Conference on Evolutionary Computation, IEEE Press, 579-384. 23. Katare, S., Caruthers, J. M., Delgass, W. N. and Venkatasubramanian, V. (2004), An intelligent system for reaction kinetic modeling and catalyst design, Industrial & Engineering Chemistry Research, 43, 3484-3512. 24. Klepeis, J. L. and Floudas,C. A. (2003), Ab initio tertiary structure prediction of proteins, Journal of Global Optimization, 25, 113-114. 25. Koziel, S. and Michalewicz Z. (1999), Evolutionary algorithms, homomorphous mapping and constrained parameter optimization, Evolutionary Computation, 7, 19-44. 26. Leung , Y. W. and Wang,Y. (2001), An orthogonal genetic algorithm with quantization for global numerical optimization, IEEE Transactions on Evolutionary Computation, 5, 41-53. 27. Luyben, W. L. (1990), Process Modeling, Simulation and Control for Chemical Engineers, McGraw –Hill, New York. 28. Maria, G. (2004), A review of algorithms an trends in kinetic model identification for chemical and biochemical systems, Chem. Biochem. Eng. Q., 18, 195-222. 29. Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A.and Teller, E. (1953), Equation of state calculations by fast computing machines, Journal of Chemical Physics, 21, 1087-1092. 30. Michalewicz, Z. and Attia, N. (1994), Evolutionary optimization of constrained problems, Procedings of the Third Annual Conference on Evolutionary Programming, World Sientific, 98-108. 31. Michalewicz, Z. and Janikow, C. Z. (1993), Handling constraints in genetic algorithms, Proceedings of the Fourth International Conference on Genetic Algorithms, Morgan Kaufmann, 151-157. 32. Michalewicz, Z. and Nazhiyath, G. (1995), GENOCOP III: A co-evolutionary algorithm for numerical optimization problems with nonlinear constraints, Proceedings of the Second IEEE International Conference on Evolutionary Computation, IEEE Press, 647-651. 33. Mockus, J. (1994), Application of Bayesian approach to numerical methods of global and stochastic optimization, Journal of Global Optimization, 4, 347-356. 34. Morris, G. M., Goodsell, D. S., Halliday, R. S., Huey, R., Hart, W. E., Belew, R. K. and Olson, A. J. (1998), Automated Docking Using a Lamarckian Genetic Algorithm and and Empirical Binding Free Energy Function, Journal Computational Chemistry, 19, 1639-1662. 35. Mühlenbein, H., Schomisch, M. and Born, J. (1991), The parallel genetic algorithm as a function optimizer, Parallel Computing, 17, 619-632. 36. Ong ,Y. S. and Keane, A. J. (2004), Meta-Lamarckian learning in memetic algorithms, IEEE Transactions on Evolutionary Computation, 8, 99-110. 37. Savageau M. A. (1969), Biochemical systems analysis.1. Some mathematical properties of rate law for component enzymatic reactions, Journal of Theoretical Biology, 25, 365-369. 38. Schoenauer, M. and Michalewicz, Z. (1996), Evolutionary computation at the edge of feasiblility, Proceedings of the Fourth International Conference on Parallel Problem Solving from Nature, Springer Verlag, 22-27. 39. Schouenauer, M. and Xanthakis, S. (1993), Constrained GA optimization, Proceedings of the Fifth International Conference on Genetic Algorithms, Morgan Kaufmann, 473-580. 40. Shannon, C. E., A Mathematical Theory of Communication (1948), Bell Syst. Tech. Journal, 27, 379-423, 623-657. 41. Siarry, P., Berthiau, G., Durbin, F. and Haussy, J. (1997), Enhanced simulated annealing for globally minimizing functions of many-continuous variables, ACM Transactions on Mathematical Software, 23, 209-228. 42. Tomassini, M., Vanneschi, L., Fernandez, F. and Galeano G. (2003), Diversity in multipopulation genetic programming, In: Genetic And Evolutionary Computation - GECCO 2003, PT II, Proceedings Lecture Notes In Computer Science 2724, pp. 1812-1813. 43. Tomassini, M., Vanneschi, L., Fernandez, F. and Galeano, G. (2004), A study of diversity in multipopulation genetic programming, Artificial Evolution Lecture Notes In Computer Science, 2936, 243-255. 44. Tsujimura, Y., and Gen, M. (1998), Entropy-based genetic algorithm for solving TSP, In: Second international Conference on Knowledge-Based Intelligent Electronic Systems, pp. 21-23. 45. Voit E. O. (1992), Optimization in Integrated Biochemical Systems, Biotechnology and Bioengineering, 40, 572-582. 46. Wang, K. F., Qian, Y., Yuan, Y. and Yao, P. J. (1998), Synthesis and optimization of heat integrated distillation systems using an improved genetic algorithm, Computers & Chemical Engineering, 23, 125-136. 47. Wright, A. H. (1991), Genetic algorithms for real parameter optimization. In: G. J. E. Rawlins (eds.), Foundations of Genetic Algorithms, p.p. 205—218. 48. Yen, J., Liao, J. C., Lee, B. J. and Randolph, D. (1998), A hybrid approach to modeling metabolic systems using a genetic algorithm and simplex method, IEEE Transactions on Systems Man and Cybernetics Part B-Cybernetics, 28, 173-191. 49. Zhong, W. C., Liu, J., Xue, M. and Jiao, L. C. (2004), A multiagent genetic algorithm for global numerical optimization, IEEE Transactions on Systems, Man and Cybernetics-Part B, 34, 1128-1141. 50. Yeniay, O. and Beytepe, A. (2005), Penalty function methods for constrained optimization with genetic algorithms, Mathematical and Computational Applications, 10, 45-56.
|