|
[1] National Science Foundation Workshop on Tissue Engineering. Lake Tahoe, CA, 1988. [2] Nerem, R. M. Cellular engineering. Annals of Biomedical Engineering 1991;19(5):529-545. [3] Palmer, J.L. & Bertone, A.L. Joint structure, biochemistry and biochemical disequilibrium in synovitis and equine joint disease. Equine Vet J 1994;26:263-277. [4] Buckwalter, J. A. Articular cartilage. AAOS Instructional Course Lectures 1983;349-370. [5] Huber, M., Trattnig, S., and Lintner F. Anatomy, biochemistry, and physiology of articular cartilage. Investigative Radiology 2000;35(10):573-580. [6] Poole C.A., Wotton S.F., Duance V.C., Localization of type IX collagen in chondrons isolated from porcine articular cartilage and rat chondrosarcoma, Histochem. J. 1996;20:567-574. [7] Hambach L., Neureiter D., Zeiler G., Kirchner T., Aigner T., Severe disturbance of the distribution and expression of type VI collagen chains in osteoarthritic articular cartilage, Arthritis Rheum. 1998;41:986-997. [8] Kielty C.M., Whittaker S.P., Grant M.E., Shuttleworth C.A., Type VI collagen microfibrils: evidence for a structural association with hyaluronan, J. Cell Biol. 1992;118:979-990. [9] Poole C.A., Ayad S, Gilbert R.T., Chondrons from articular cartilage—V. Immunohistochemical evaluation of type VI collagen organisation in isolated chondrons by light, confocal and electron microscopy, J. Cell Sci. 1992;103:1101-1110. [10] Bruckner P., Van der Rest M., Structure and function of cartilage collagens, Microscopic Res. Technol. 1994;28:378-384. [11] Carney S.L., Muir H., The structure and function of cartilage proteoglycans, Physiol. Rev. 1988;68:858-910. [12] Couchman JR. Syndecans: Proteoglycan regulators of cell-surface microdomains? Nature Reviews Molecular Cell Biology 2003;4(12):926-937. [13] Buschmann MD, Grodzinsky AJ. A molecular-model of proteoglycan-associated electrostatic forces in cartilage mechanics. Journal of Biomechanical Engineering-Transactions of the ASME 1995;117(2):179-192. [14] Doege KJ, Sasaki M, Kimura T, Yamada Y. Complete coding sequence and deduced primary structure of the human cartilage large aggregating proteoglycan, aggrecan-Human-specific repeats, and additional alternatively spliced forms. Journal of Biological Chemistry 1991;266(2):894-902. [15] Lauder R.M., Huckerby T.N., Brown G.M., Bayliss M.T., Nieduszynski I.A.. Age-related changes in the sulphation of the chondroitin sulphate linkage region from human articular cartilage aggrecan, Biochem. J. 2001;358:523-528. [16] Barbucci, R., Lamponi, S., Borzacchiello, A., Ambrosio, A., Fini, M., Torricelli, P. and Giardino, R. Hyaluronic acid hydrogel in the treatment of osteoarthritis. Biomaterials 2002;23:4503-4513. [17] Poole AR. Imbalances of anabolism and catabolism of cartilage matrix components in osteoarthritis. In: Kuettner KE, Goldberg VM, Eds. Osteoarthritic Disorders. Rosemont, IL: American Academy of Orthopaedic Surgeons 1995:247-260. [18] Venn G, Billingham ME, Hardingham TE. Increased proteoglycan synthesis in cartilage in experimental canine osteoarthritis does not reflect a permanent change in chondrocyte phenotype. Arthritis Rheum 1995;38:525. [19] Verzijl, N., DeGroot, J., Thorpe, S.R., Bank, R.A., Shaw, J.N., Lyons, T.J., Bijlsma, J.W., Lafeber, F.P., Baynes, J.W. & TeKoppele, J.M. Effect of collagen turnover on the accumulation of advanced glycation end products. J Biol Chem 2000;15:39027-39031. [20] Pfander, D., Rahmanzadeh, R. & Scheller, E.E. Presence and distribution of collagen II, collagen I, fibronectin, and tenascin in rabbit normal and osteoarthritic cartilage. J Rheumatol 1999;26:386-394. [21] Sandell, L.J. & Aigner, T. Articular cartilage and changes in arthritis: Cell biology of osteoarthritis. Ahrtritis Res 2001;3:107-113. [22] Clegg, P.D., Coughlan, A.R. & Carter, S.D. (1998) Equine TIMP-1 and TIMP-2: identification, activity and cellular sources. Equine Vet J 1998;30:416-423. [23] Pittenger, M. F., Mackay, A. M., Beck, S. C., Jaiswal, R. K., Douglas, R., Mosca, J. D., Moorman, M. A., Simonetti, D. W., Craig, S., Marshak, D. R. Multilineage potential of adult human mesenchymal stem cells. Science 1999;284(5411):143-147. [24] Grande DA, Halberstadt C, Naughton G, Schwartz R, Ryhana M. Evaluation of matrix scaffolds for the tissue engineering of articular cartilage grafts. J Biomed Mater Res 1997;34:211-220. [25] Frenkel SR, Toolan B, Menche D, Pitman M, Pachence JM. Chondrocyte transplantation using a collagen bilayer matrix for cartilage repair. J Bone Jt Surg 1997;79-B:831-836. [26] Nehrer S, Breinan HA, Ramappa A, Shortkro! S, Young G, Minas T, Sledge CB, Yannas IV, Spector M. Canine chondrocytes seeded in type I and type II collagen implants investigated in vitro. J Biomed Mater Res 1997;38:95-104. [27] WN Qi, Scully SP. Extracellular collagen modulates the regulation of chondrocytes by transforming growth factor-beta 1. J Orthop Res 1997;15(4):483-490. [28] Freed, L. E., Marquis, J. C., Nohria, A., Emmanual, J., Mikos, A. G., Langer, R. Neocartilage formation in vitro and in vivo using cells cultured on synthetic Biodegradable polymers. Journal of Biomedical Materials Research 1993;27(1): 11-23. [29] Sittinger, M., Reitzel D., Dauner, M., Hierlemann, H., Hammer C., Kastenbauer, E., Planck, H., Burmester, G. R., Bujia, J. Resorbable polyesters in cartilage engineering: affinity and biocompatibility of polymer fiber structures to chondrocytes. J Biomed Mater Res 1996;33(2):57-63. [30] Kosher RA, Church RL. Stimulation of in vitro somite chondrogenesis by procollagen and collagen. Nature 1975;258:327-330. [31] Langer R, Vacanti JP. Tissue engineering. Science 1993;260(5110):920-926. [32] Gillogly S.D., Voight M., Blackburn T., Treatment of articular cartilage defects of the knee with autologous chondrocyte implantation, J. Orthop. Sports Phys. Ther. 1998;28:241-251. [33] Hunziker E.B., Articular cartilage repair: are the intrinsic biological constraints undermining this process insuperable?. Osteoarthritis Cartilage 1999;7:15–28. [34] Pimentel E., in: Handbook of Growth Factors: Peptide Growth Factors, Vol. 2, CRC Press, Boca Raton, FL, 1994. [35] Sporn M.B., Roberts A.B.,. Wakefield L.M, Assoian R.K., Transforming growth factor-beta: biological function and chemical structure, Science 1986;233:532-534. [36] Border W.A., Noble N.A., Transforming growth factor beta in tissue fibrosis, New Engl. J. Med. 1994;331:1286-1292. [37] Demoor-Fossard M., Galera P., Santra M., Iozzo R.V., Pujol J.P., Redini F., A composite element binding the vitamin D receptor and the retinoic X receptor alpha mediates the transforming growth factor-beta inhibition of decorin gene expression in articular chondrocytes, J. Biol. Chem. 2001;276:36983-36992. [38] Olofsson A., Miyazono K., Kanzaki T., Colosetti P., Engstrom U., Heldin C.H., Transforming growth factor-beta 1, -beta 2, and -beta 3 secreted by a human glioblastoma cell line. Identification of small and different forms of large latent complexes, J. Biol. Chem. 1992;267:19482-19488. [39] Luyten F.P., Chen P., Paralkar V., Reddi A.H., Recombinant bone morphogenetic protein-4, transforming growth factor- beta 1, and activin A enhance the cartilage phenotype of articular chondrocytes in vitro, Exp. Cell Res. 1994;210:224-229. [40] Kaps C., Bramlage C., Smolian H., Haisch A., Ungethum U., Burmester G.R., Sittinger M., Gross G., Haupl T., Bone morphogenetic proteins promote cartilage differentiation and protect engineered artificial cartilage from fibroblast invasion and destruction, Arthritis Rheum. 2002;46:149-162. [41] Sekiya I., Colter D.C., Prockop D.J., BMP-6 enhances chondrogenesis in a subpopulation of human marrow stromal cells, Biochem. Biophys. Res. Commun. 2001;284:411-418. [42] Loredo G.A., MacDonald M.H., Benton H.P., Regulation of glycosaminoglycan metabolism by bone morphogenetic protein-2 in equine cartilage explant cultures, Am. J. Vet. Res. 1996;57:554-559. [43] Morales T.I., The role and content of endogenous insulin-like growth factor-binding proteins in bovine articular cartilage, Arch. Biochem. Biophys. 1997;343:164-172. [44] Xu C., Oyajobi B.O., Frazer A., Kozaci L.D., Russell R.G., Hollander A.P., Effects of growth factors and interleukin-1 alpha on proteoglycan and type II collagen turnover in bovine nasal and articular chondrocyte pellet cultures, Endocrinology 1996;137:3557-3565. [45] Luyten F.P., Hascall V.C., Nissley S.P., Morales T.I., Reddi A.H., Insulin-like growth factors maintain steady-state metabolism of proteoglycans in bovine articular cartilage explants, Arch. Biochem. Biophys. 1988;267:416-425. [46] Gooch K.J., Blunk T., Courter D.L., Sieminski A.L., Bursac P.M., Vunjak-Novakovic G., Freed L.E., IGF-I and mechanical environment interact to modulate engineered cartilage development, Biochem. Biophys. Res. Commun. 2001;286:909-915. [47] Loeser R.F., Chondrocyte integrin expression and function, Biorheology 2000;37:109-116. [48] Cuevas P., Burgos J., Baird A., Basic fibroblast growth factor (FGF) promotes cartilage repair in vivo, Biochem. Biophys. Res. Commun. 1988;156:611–618. [49] Shida J., Jingushi S., Izumi T., Iwaki A., Sugioka Y., Basic fibroblast growth factor stimulates articular cartilage enlarge- ment in young rats in vivo, J. Orthop. Res. 1996;14:265-272. [50] Vincent T., Hermansson M., Bolton M., Wait R., Saklatvala J., Basic FGF mediates an immediate response of articular cartilage to mechanical injury, Proc. Natl. Acad. Sci. USA 2002;99:8259-8264. [51] Borden P., Solymar D., Sucharczuk A., Lindman B., Cannon P., Heller R.A., Cytokine control of interstitial collagenase and collagenase-3 gene expression in human chondrocytes, J. Biol. Chem. 1996;271:23577-23581. [52] Pimentel E., in: Handbook of Growth Factors: Hematopoietic Growth Factors and Cytokines, Vol. 3, CRC Press, Boca Raton, FL, 1994. [53] Cassiede P., Dennis J.E., Ma F., Caplan A.I., Osteochondrogenic potential of marrow mesenchymal progenitor cells exposed to TGF-beta 1 or PDGF-BB as assayed in vivo and in vitro, J. Bone Miner. Res. 1996;11:1264-1273. [54] Borden P., Solymar D., Sucharczuk A., Lindman B., Cannon P., Heller R.A., Cytokine control of interstitial collagenase and collagenase-3 gene expression in human chondrocytes, J. Biol. Chem. 1996;271:23577-23581. [55] Hulth A., Johnell O., Miyazono K., Lindberg L., Heinegard D., Heldin C.H., Effect of transforming growth factor-beta and platelet-derived growth factor-BB on articular cartilage in rats, J. Orthop. Res. 1996;14:547-553. [56] Jakob M., Demarteau O., Schafer D., Hintermann B., Dick W., Heberer M., Martin I., Specific growth factors during the expansion and redifferentiation of adult human articular chondrocytes enhance chondrogenesis and cartilaginous tissue formation in vitro, J. Cell Biochem. 2001;81:368-377. [57] Pfander D., Kortje D., Zimmermann R., Weseloh G., Kirsch T., Gesslein M., Cramer T., Swoboda B., Vascular endothelial growth factor in articular cartilage of healthy and osteoarthritic human knee joints, Ann. Rheum. Dis. 2001;60:1070-1073. [58] Gerber H.P., Vu T.H., Ryan A.M., Kowalski J., Werb Z., Ferrara N., VEGF couples hypertrophic cartilage remodeling, ossification and angiogenesis during endochondral bone formation, Nat. Med. 1999;5:623-628. [59] Kincl, M., Vreˇcer, F., Veber, M. Characterization of factors affecting the release of low solubility drug from prolonged release tablets. 2004a;ACA 502:107–113. [60] Castro PML, Hayter PM, Ison AP, Bull AT. Application of statistical design to the optimization of culture medium for recombinant interferon-gamma production by Chinese hamster ovary cells. Appl Microbiol Biotech 1992;38:84-90. [61] Escamilla EM, Dendooven L, Maga˜na IP, Parra SP, De la Torre M. Optimization of gibberellic acid production by immobilized Gibberella fujikuroi mycelium in fluidized bioreactors. J Biotechnol 2000;76:147-155. [62] Xu C-P, Kim S-W, Hwang H-J, Choi J-W, Yun J-W. Optimization of submerged culture conditions for mycelial growth and exobiopolymer production by Paecilomyces tenuipes C240. Process Biochem 2003;38:1025-1030. [63] Pieper J.S., Van der Kraan P.M., Hafmans T., Kamp J., Buma P., Van Susante J.L.C., Van den Berg W.B., Veerkamp J.H., Van Kuppevelt T.H.. Crosslinked type II collagen matrices: preparation, characterization, and potential for cartilage engineering. Biomaterials 2002;23:3183-3192. [64] Stryer L. Biochemistry, 3rd ed. New York: Freeman, 1988:50-5. [65] Kim YJ, Sah RL, Doong JY, Grodzinsky AJ. Fluorometric assay of DNA in cartilage explants using Hoechst 33258. Anal Biochem 1988;174:168-176. [66] Brian O. Enobakhare, Dan L. Bader, and David A. Lee. Quantification of Sulfated Glycosaminoglycans in Chondrocyte/Alginate Cultures, by Use of 1,9-Dimethylmethylene Blue. Anal Biochem 1996;243:189-191. [67] Weadock K, Olson RM, Silver FH. Evaluation of collagen crosslinking techniques. Biomater Med Devices Artif Organs 1984;11:293-318. [68] Khor E. Methods for the treatment of collagenous tissues for bioprostheses. Biomaterials 1997;18:95-105. [69] Meade KR, Silver FH. Immunogenicity of collagenous implants. Biomaterials 1990;11:176-180. [70] Nishi C, Nakajima N, Ikada Y. In vitro evaluation of Cytotoxicity of diepoxy compounds used for biomaterial modification. J Biomed Mater Res 1995;29:829–834. [71] Schoen FJ, Harasaki H, Kim KM, Anderson HC, Levy RJ. Biomaterial- associated calcification: Pathology, mechanisms, and strategies for prevention. J Biomed Mater Res 1988;22:11–36. [72] Speer DP, Chvapil M, Eskelson CD, Ulreich J. Biological effects of residual glutaraldehyde in glutaraldehyde-tanned collagen biomaterials. J Biomed Mater Res 1980;14:753–764. [73] Sung HW, Huang RN, Huang LLH, Tsai CC, Chiu CT. Feasibility study of a natural crosslinking reagent for biological tissue fixation. J Biomed Mater Res 1998;42:560–567. [74] Huang LLH, Sung HW, Tsai CC, Huang DM. Biocompatibility study of a biological tissue fixed with a naturally occurring crosslinking reagent. J Biomed Mater Res 1998;42;568–576. [75] Sung HW, Huang RN, Huang LLH, Tsai CC. In vitro evaluation of cytotoxicity of a naturally occurring crosslinking reagent for biological tissue fixation. J Biomater Sci Polym Ed 1999;10:63–78. [76] Touyama R, Takeda Y, Inoue K, Kawamura I, Yatsuzuka M, Ikumoto T, Shingu T, Yokoi T, Inouye H. Studies on the blue pigments produced from genipin and methylamine. I. Structures of the brownish-red pigments, intermediates leading to the blue pigments. Chem Pharm Bull 1994;42:668–673. [77] Touyama R, Inoue K, Takeda Y, Yatsuzuka M, Ikumoto T, Moritome N, Shingu T, Yokoi T, Inouye H. Studies on the blue pigments produced from genipin and methylamine. II. On the formation mechanisms of brownish-red intermediates leading to the blue pigment formation. Chem Pharm Bull 1994;42:1571–1578. [78] Kjellen L, Lindahl U (1991) Proteoglycans: structures and interactions. Annu Rev Biochem 1991;60:443–475. [79] Nishikawa H., Mori I., Umemoto J. Influences of sulfated glycosaminoglycans on biosynthesis of hyaluronic acid in rabbit knee synovial membrane. Arch Biochem Biophys 1985;240:146–153. [80] Nishikawa H., Mori I., Umemoto J. Glycosaminoglycan polysulfate-induced stimulation of hyaluronic acid synthesis in rabbit knee synovial membrane: involvement of binding protein and calcium ion. Arch Biochem Biophys 1988;266:201–209. [81] Bernfield, M., Gotte, M., Park, P.W., Reizes, O., Fitzgerald, M.L., Lincecum, J., and Zako, M. Functions of cell surface heparan sulfate proteoglycans. Annu. Rev. Biochem 1999;68:729–777. [82] Van Kuppevelt THSM, Veerkamp JH. Application of cationic probes for the ultrastructural localization of proteoglycans in basement membranes. Microsc Res Tech 1994;28:125-140. [83] Vogel KG, Trotter JA. The effect of proteoglycans on the morphology of collagen fibrils formed in vitro. Collagen Rel Res 1987;7:105-114. [84] Van Kuppevelt THSM, Janssen HMJ, Beuningen HM, et al. Isolation and characterization of a collagen fibril-associated dermatan sulphate proteoglycan from bovine lung. Biochim Biophys Acta 1987;926:296-309. [85] Erlinger R. Glycosaminoglycans in porcine lung: an ultrastructural study using cupromeronic blue. Cell Tissue Res 1995;281:473-483. [86] Chow G, Knudson CB, Homandberg G, Knudson W. Increased expression of CD44 in bovine articular chondrocytes by catabolic cellular mediators. J Biol Chem 1995;270:27734–27741. [87] Holmes M.W., Bayliss M.T., Muir H.. Hyaluronic acid in human articular cartilage. Age-related changes in content and size. Biochem. J. 1988;250:435–441. [88] Bayliss MT, Davidson C, Woodhouse SM, Osborne DJ. Chondroitin sulphation in human joint tissues varies with age, zone and topography. Acta Orthop Scand 1995;66(Suppl 266):22–25. [89] Toyoda H, Shinomiya K, Yamanashi S, Koshiishi I, Immanari T. Microdetermination of unsaturated disaccharides produced from chondroitin sulfates in rabbit plasma by high performance liquid chromatography with flurometric detection. Anal Sci 1989;4:381–384. [90] Hardingham TE, Fonsang AJ. Proteoglycans: many forms, many functions. FASEB J 1992;6:861–870. [91] Anna H. K. Plaas, Leigh A. West, Shirley Wong-Palms, and Fred R. T. Nelson. Glycosaminoglycan Sulfation in Human Osteoarthritis J Biol Chem, 1998;273:12642-12649. [92] Rizkalla, G., Reigner, A., Bogoch, E., and Poole, A. R. Studies of the articular cartilage proteoglycan aggrecan in health and osteoarthritis. Evidence for molecular heterogeneity and extensive molecular changes in disease. J. Clin. Invest. 1992;90:2268–2277. [93] Vasan, N. Proteoglycans in normal and severely osteoarthritic human cartilage. Biochem. J. 1980;187:781–787. [94] Benya PD, Padilla SR, Nimni ME. The progeny of rabbit articular chondrocytes synthesize collagen types I, III and type I trimer, but not type II. Verifications by cyanogens bromide peptide analysis. Biochemistry 1977;16:865–872. [95] Grundmann K, Zimmermann B, Barrach HJ, Merker H-J. Behaviour of epiphyseal mouse chondrocyte populations in monolayer culture. Virchows Arch A Path Anat Histol 1980;389:167–187. [96] Von Der Mark K. Immunological studies on collagen type transition in chondrogenesis. Curr Top Dev Biol 1980;14:199–225. [97] Shakibaei M. Integrin expression on epiphyseal mouse chondrocytes in monolayer culture. Histol Histopathol 1995;10:339–349. [98] Zhao, Q., Eberspaecher, H., Lefebvre, V. and De Crombrugghe, B. Parallel expression of Sox9 and Col2a1 in cells undergoing chondrogenesis. Dev. Dyn 1997;209:377-386. [99] Kulyk, WM; Franklin, JL; Hoffman, LM. Sox9 expression during chondrogenesis in micromass cultures of embryonic limb mesenchyme. Experimental Cell Res. 2000;255(2):327-332.
|