跳到主要內容

臺灣博碩士論文加值系統

(44.192.49.72) 您好!臺灣時間:2024/09/14 05:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳俊賢
研究生(外文):Chun-Hsien Wu
論文名稱:人類軟骨細胞無血清培養基之開發與應用
論文名稱(外文):Development of Serum-Free Medium for Human Chondrocytes
指導教授:朱一民朱一民引用關係
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:48
中文關鍵詞:膠原蛋白二型醣胺素無血清培養基軟骨細胞生長因子
外文關鍵詞:collagen IIGlycosaminoglycanschondrocytesGrowth FactorsSerum-free medium
相關次數:
  • 被引用被引用:0
  • 點閱點閱:341
  • 評分評分:
  • 下載下載:57
  • 收藏至我的研究室書目清單書目收藏:0
此研究當中包含了三個部分包括:製造膠原蛋白二型載體、探討各種醣胺素對於人類軟骨細胞的影響以及人類軟骨細胞體外無血清培養基的開發。第一個部分當中,我們已經成功地從牛支氣管萃取出膠原蛋白第二型,再以genipin和膠原蛋白第二型載體交聯。交聯後確實提高了材料的強度以及物化性質,此仿效人類天然軟骨的載體將可供關節軟骨細胞正常地生長。第二部分主要是先篩選出醣胺素的種類及濃度對於軟骨細胞的影響,藉由添加在培養基當中觀察軟骨細胞的生化合成速率以及基因表現。實驗結果顯示添加10μg/ml CS-A、50μg/ml CS-B、50μg/ml CS-C、5μg/ml HS和500kDa Hyaluronan都能夠有效的增加胞外間質分泌與細胞增生速率,Aggrecan和Collagen type II這兩個基因表現也都有上昇的現象。雖然添加沒有裂解 (non-depolymerization) 的長碳鏈CS能夠使軟骨細胞正常分化及生長,但我們發現短碳鏈的CS-C6 (六個醣的CS-C) 對於軟骨影響更大,無論是調升應有的基因表現或者是抑制分解酵素基因的表現,都說明了添加短碳鏈的CS於培養基中的確有較佳的結果。最後一部份則是著重在無血清培養基的開發,先挑選七種軟骨細胞常用的生長因子,利用二階因子的實驗設計方法來篩選出人類軟骨細胞增殖及分化所需要的血清取代物組成,並搭配陡升路徑的實驗來找尋其適切的濃度,最終結果的配方:10.26 ng/ml FGF-2、10.30 ng/ml EGF、10.42 ng/ml TGF-β1、53.00 ng/ml BMP-2 和 11.01 ng/ml VEGF。此種經由實驗設計所開發出的無血清培養基,在軟骨細胞的主要基因表現上確實跟添加血清的表現量是雷同的,因此證明本研究所開發的無血清培養基是具有其應用價值。
In this study, there are there major parts including fabricating collagen type II scaffold, various glycosaminoglycans effect on chondrocytes, and serum-free media design for chondrocytes. In first part, we successfully isolated collagen type II from bovine trachea and crosslinked by genipin. Crosslinking by genipin indeed reinforced the scaffold intensity and physico-chemical characteristics. In second part, our aim is to investigate the effect of various glycosaminoglycans into medium cultured with genipin-crosslinked collagen type II scaffolds. Our results suggest that chondrocytes cultured within genipin-crosslinked scaffolds may show better tendency for differentiation by adding certain dose of GAGs (10μg/ml CS-A, 50μg/ml CS-B, 50μg/ml CS-C, 5μg/ml HS, and 500kDa Hyaluronan). On transcription level we show that treatment with CS-A, CS-C, and 500kDa HA lead to a significant up-regulation of collagen type II and aggrecan expression. These indicate that supplement with GAGs into medium are potent for promoting excreting ECM of normal cartilage. Although non-depolymerization CS-A and CS-C act as good addition of cultured medium, CS-C6 (hexasaccharides of CS-C) may be more powerful because it can inhibit further degradation due to catabolic activities, in the meantime heighten the anabolic ability. In the last part, seven kinds of growth factors which are most often used for chondrocytes growth and differentiation are selected. The 27-3 fractional factorial design is adopted here to determine what growth factors are required in the chondrogenic culture. There were five growth factors left to determine concentration in the serum-free medium along the steepest ascent path. Applicable serum-free and growth factor-containing medium for the chondrocytes is developed, which is composed of DMEM containing 10.26 ng/ml FGF-2, 10.30 ng/ml EGF, 10.42 ng/ml TGF-β1, 53.00 ng/ml BMP-2, and 11.01 ng/ml VEGF. Finally, we conclude that our serum-free medium including glycosaminoglycans and growth factors are functionally substituted for animal serum.
Abstract..........................I
摘要.............................II
List of Tables
List of Figures
List of Abbreviation
Chapter
1.Motivation and Intention........1
2.Introduction....................2
3.Materials and Methods..........12
4.Results........................18
5.Discussion.....................35
6.Conclusion and Future Work.....40
Bibliography
[1] National Science Foundation Workshop on Tissue Engineering. Lake Tahoe, CA, 1988.
[2] Nerem, R. M. Cellular engineering. Annals of Biomedical Engineering 1991;19(5):529-545.
[3] Palmer, J.L. & Bertone, A.L. Joint structure, biochemistry and biochemical disequilibrium in synovitis and equine joint disease. Equine Vet J 1994;26:263-277.
[4] Buckwalter, J. A. Articular cartilage. AAOS Instructional Course Lectures 1983;349-370.
[5] Huber, M., Trattnig, S., and Lintner F. Anatomy, biochemistry, and physiology of articular cartilage. Investigative Radiology 2000;35(10):573-580.
[6] Poole C.A., Wotton S.F., Duance V.C., Localization of type IX collagen in chondrons isolated from porcine articular cartilage and rat chondrosarcoma, Histochem. J. 1996;20:567-574.
[7] Hambach L., Neureiter D., Zeiler G., Kirchner T., Aigner T., Severe disturbance of the distribution and expression of type VI collagen chains in osteoarthritic articular cartilage, Arthritis Rheum. 1998;41:986-997.
[8] Kielty C.M., Whittaker S.P., Grant M.E., Shuttleworth C.A., Type VI collagen microfibrils: evidence for a structural association with hyaluronan, J. Cell Biol. 1992;118:979-990.
[9] Poole C.A., Ayad S, Gilbert R.T., Chondrons from articular cartilage—V. Immunohistochemical evaluation of type VI collagen organisation in isolated chondrons by light, confocal and electron microscopy, J. Cell Sci. 1992;103:1101-1110.
[10] Bruckner P., Van der Rest M., Structure and function of cartilage collagens, Microscopic Res. Technol. 1994;28:378-384.
[11] Carney S.L., Muir H., The structure and function of cartilage proteoglycans, Physiol. Rev. 1988;68:858-910.
[12] Couchman JR. Syndecans: Proteoglycan regulators of cell-surface microdomains? Nature Reviews Molecular Cell Biology 2003;4(12):926-937.
[13] Buschmann MD, Grodzinsky AJ. A molecular-model of proteoglycan-associated electrostatic forces in cartilage mechanics. Journal of Biomechanical Engineering-Transactions of the ASME 1995;117(2):179-192.
[14] Doege KJ, Sasaki M, Kimura T, Yamada Y. Complete coding sequence and deduced primary structure of the human cartilage large aggregating proteoglycan, aggrecan-Human-specific repeats, and additional alternatively spliced forms. Journal of Biological Chemistry 1991;266(2):894-902.
[15] Lauder R.M., Huckerby T.N., Brown G.M., Bayliss M.T., Nieduszynski I.A.. Age-related changes in the sulphation of the chondroitin sulphate linkage region from human articular cartilage aggrecan, Biochem. J. 2001;358:523-528.
[16] Barbucci, R., Lamponi, S., Borzacchiello, A., Ambrosio, A., Fini, M., Torricelli, P. and Giardino, R. Hyaluronic acid hydrogel in the treatment of osteoarthritis. Biomaterials 2002;23:4503-4513.
[17] Poole AR. Imbalances of anabolism and catabolism of cartilage matrix components in osteoarthritis. In: Kuettner KE, Goldberg VM, Eds. Osteoarthritic Disorders. Rosemont, IL: American Academy of Orthopaedic Surgeons 1995:247-260.
[18] Venn G, Billingham ME, Hardingham TE. Increased proteoglycan synthesis in cartilage in experimental canine osteoarthritis does not reflect a permanent change in chondrocyte phenotype. Arthritis Rheum 1995;38:525.
[19] Verzijl, N., DeGroot, J., Thorpe, S.R., Bank, R.A., Shaw, J.N., Lyons, T.J., Bijlsma, J.W., Lafeber, F.P., Baynes, J.W. & TeKoppele, J.M. Effect of collagen turnover on the accumulation of advanced glycation end products. J Biol Chem 2000;15:39027-39031.
[20] Pfander, D., Rahmanzadeh, R. & Scheller, E.E. Presence and distribution of collagen II, collagen I, fibronectin, and tenascin in rabbit normal and osteoarthritic cartilage. J Rheumatol 1999;26:386-394.
[21] Sandell, L.J. & Aigner, T. Articular cartilage and changes in arthritis: Cell biology of osteoarthritis. Ahrtritis Res 2001;3:107-113.
[22] Clegg, P.D., Coughlan, A.R. & Carter, S.D. (1998) Equine TIMP-1 and TIMP-2: identification, activity and cellular sources. Equine Vet J 1998;30:416-423.
[23] Pittenger, M. F., Mackay, A. M., Beck, S. C., Jaiswal, R. K., Douglas, R., Mosca, J. D., Moorman, M. A., Simonetti, D. W., Craig, S., Marshak, D. R. Multilineage potential of adult human mesenchymal stem cells. Science 1999;284(5411):143-147.
[24] Grande DA, Halberstadt C, Naughton G, Schwartz R, Ryhana M. Evaluation of matrix scaffolds for the tissue engineering of articular cartilage grafts. J Biomed Mater Res 1997;34:211-220.
[25] Frenkel SR, Toolan B, Menche D, Pitman M, Pachence JM. Chondrocyte transplantation using a collagen bilayer matrix for cartilage repair. J Bone Jt Surg 1997;79-B:831-836.
[26] Nehrer S, Breinan HA, Ramappa A, Shortkro! S, Young G, Minas T, Sledge CB, Yannas IV, Spector M. Canine chondrocytes seeded in type I and type II collagen implants investigated in vitro. J Biomed Mater Res 1997;38:95-104.
[27] WN Qi, Scully SP. Extracellular collagen modulates the regulation of chondrocytes by transforming growth factor-beta 1. J Orthop Res 1997;15(4):483-490.
[28] Freed, L. E., Marquis, J. C., Nohria, A., Emmanual, J., Mikos, A. G., Langer, R. Neocartilage formation in vitro and in vivo using cells cultured on synthetic Biodegradable polymers. Journal of Biomedical Materials Research 1993;27(1): 11-23.
[29] Sittinger, M., Reitzel D., Dauner, M., Hierlemann, H., Hammer C., Kastenbauer, E., Planck, H., Burmester, G. R., Bujia, J. Resorbable polyesters in cartilage engineering: affinity and biocompatibility of polymer fiber structures to chondrocytes. J Biomed Mater Res 1996;33(2):57-63.
[30] Kosher RA, Church RL. Stimulation of in vitro somite chondrogenesis by procollagen and collagen. Nature 1975;258:327-330.
[31] Langer R, Vacanti JP. Tissue engineering. Science 1993;260(5110):920-926.
[32] Gillogly S.D., Voight M., Blackburn T., Treatment of articular cartilage defects of the knee with autologous chondrocyte implantation, J. Orthop. Sports Phys. Ther. 1998;28:241-251.
[33] Hunziker E.B., Articular cartilage repair: are the intrinsic biological constraints undermining this process insuperable?. Osteoarthritis Cartilage 1999;7:15–28.
[34] Pimentel E., in: Handbook of Growth Factors: Peptide Growth Factors, Vol. 2, CRC Press, Boca Raton, FL, 1994.
[35] Sporn M.B., Roberts A.B.,. Wakefield L.M, Assoian R.K., Transforming growth factor-beta: biological function and chemical structure, Science 1986;233:532-534.
[36] Border W.A., Noble N.A., Transforming growth factor beta in tissue fibrosis, New Engl. J. Med. 1994;331:1286-1292.
[37] Demoor-Fossard M., Galera P., Santra M., Iozzo R.V., Pujol J.P., Redini F., A composite element binding the vitamin D receptor and the retinoic X receptor alpha mediates the transforming growth factor-beta inhibition of decorin gene expression in articular chondrocytes, J. Biol. Chem. 2001;276:36983-36992.
[38] Olofsson A., Miyazono K., Kanzaki T., Colosetti P., Engstrom U., Heldin C.H., Transforming growth factor-beta 1, -beta 2, and -beta 3 secreted by a human glioblastoma cell line. Identification of small and different forms of large latent complexes, J. Biol. Chem. 1992;267:19482-19488.
[39] Luyten F.P., Chen P., Paralkar V., Reddi A.H., Recombinant bone morphogenetic protein-4, transforming growth factor- beta 1, and activin A enhance the cartilage phenotype of articular chondrocytes in vitro, Exp. Cell Res. 1994;210:224-229.
[40] Kaps C., Bramlage C., Smolian H., Haisch A., Ungethum U., Burmester G.R., Sittinger M., Gross G., Haupl T., Bone morphogenetic proteins promote cartilage differentiation and protect engineered artificial cartilage from fibroblast invasion and destruction, Arthritis Rheum. 2002;46:149-162.
[41] Sekiya I., Colter D.C., Prockop D.J., BMP-6 enhances chondrogenesis in a subpopulation of human marrow stromal cells, Biochem. Biophys. Res. Commun. 2001;284:411-418.
[42] Loredo G.A., MacDonald M.H., Benton H.P., Regulation of glycosaminoglycan metabolism by bone morphogenetic protein-2 in equine cartilage explant cultures, Am. J. Vet. Res. 1996;57:554-559.
[43] Morales T.I., The role and content of endogenous insulin-like growth factor-binding proteins in bovine articular cartilage, Arch. Biochem. Biophys. 1997;343:164-172.
[44] Xu C., Oyajobi B.O., Frazer A., Kozaci L.D., Russell R.G., Hollander A.P., Effects of growth factors and interleukin-1 alpha on proteoglycan and type II collagen turnover in bovine nasal and articular chondrocyte pellet cultures, Endocrinology 1996;137:3557-3565.
[45] Luyten F.P., Hascall V.C., Nissley S.P., Morales T.I., Reddi A.H., Insulin-like growth factors maintain steady-state metabolism of proteoglycans in bovine articular cartilage explants, Arch. Biochem. Biophys. 1988;267:416-425.
[46] Gooch K.J., Blunk T., Courter D.L., Sieminski A.L., Bursac P.M., Vunjak-Novakovic G., Freed L.E., IGF-I and mechanical environment interact to modulate engineered cartilage development, Biochem. Biophys. Res. Commun. 2001;286:909-915.
[47] Loeser R.F., Chondrocyte integrin expression and function, Biorheology 2000;37:109-116.
[48] Cuevas P., Burgos J., Baird A., Basic fibroblast growth factor (FGF) promotes cartilage repair in vivo, Biochem. Biophys. Res. Commun. 1988;156:611–618.
[49] Shida J., Jingushi S., Izumi T., Iwaki A., Sugioka Y., Basic fibroblast growth factor stimulates articular cartilage enlarge- ment in young rats in vivo, J. Orthop. Res. 1996;14:265-272.
[50] Vincent T., Hermansson M., Bolton M., Wait R., Saklatvala J., Basic FGF mediates an immediate response of articular cartilage to mechanical injury, Proc. Natl. Acad. Sci. USA 2002;99:8259-8264.
[51] Borden P., Solymar D., Sucharczuk A., Lindman B., Cannon P., Heller R.A., Cytokine control of interstitial collagenase and collagenase-3 gene expression in human chondrocytes, J. Biol. Chem. 1996;271:23577-23581.
[52] Pimentel E., in: Handbook of Growth Factors: Hematopoietic Growth Factors and Cytokines, Vol. 3, CRC Press, Boca Raton, FL, 1994.
[53] Cassiede P., Dennis J.E., Ma F., Caplan A.I., Osteochondrogenic potential of marrow mesenchymal progenitor cells exposed to TGF-beta 1 or PDGF-BB as assayed in vivo and in vitro, J. Bone Miner. Res. 1996;11:1264-1273.
[54] Borden P., Solymar D., Sucharczuk A., Lindman B., Cannon P., Heller R.A., Cytokine control of interstitial collagenase and collagenase-3 gene expression in human chondrocytes, J. Biol. Chem. 1996;271:23577-23581.
[55] Hulth A., Johnell O., Miyazono K., Lindberg L., Heinegard D., Heldin C.H., Effect of transforming growth factor-beta and platelet-derived growth factor-BB on articular cartilage in rats, J. Orthop. Res. 1996;14:547-553.
[56] Jakob M., Demarteau O., Schafer D., Hintermann B., Dick W., Heberer M., Martin I., Specific growth factors during the expansion and redifferentiation of adult human articular chondrocytes enhance chondrogenesis and cartilaginous tissue formation in vitro, J. Cell Biochem. 2001;81:368-377.
[57] Pfander D., Kortje D., Zimmermann R., Weseloh G., Kirsch T., Gesslein M., Cramer T., Swoboda B., Vascular endothelial growth factor in articular cartilage of healthy and osteoarthritic human knee joints, Ann. Rheum. Dis. 2001;60:1070-1073.
[58] Gerber H.P., Vu T.H., Ryan A.M., Kowalski J., Werb Z., Ferrara N., VEGF couples hypertrophic cartilage remodeling, ossification and angiogenesis during endochondral bone formation, Nat. Med. 1999;5:623-628.
[59] Kincl, M., Vreˇcer, F., Veber, M. Characterization of factors affecting the release of low solubility drug from prolonged release tablets. 2004a;ACA 502:107–113.
[60] Castro PML, Hayter PM, Ison AP, Bull AT. Application of statistical design to the optimization of culture medium for recombinant interferon-gamma production by Chinese hamster ovary cells. Appl Microbiol Biotech 1992;38:84-90.
[61] Escamilla EM, Dendooven L, Maga˜na IP, Parra SP, De la Torre M. Optimization of gibberellic acid production by immobilized Gibberella fujikuroi mycelium in fluidized bioreactors. J Biotechnol 2000;76:147-155.
[62] Xu C-P, Kim S-W, Hwang H-J, Choi J-W, Yun J-W. Optimization of submerged culture conditions for mycelial growth and exobiopolymer production by Paecilomyces tenuipes C240. Process Biochem 2003;38:1025-1030.
[63] Pieper J.S., Van der Kraan P.M., Hafmans T., Kamp J., Buma P., Van Susante J.L.C., Van den Berg W.B., Veerkamp J.H., Van Kuppevelt T.H.. Crosslinked type II collagen matrices: preparation, characterization, and potential for cartilage engineering. Biomaterials 2002;23:3183-3192.
[64] Stryer L. Biochemistry, 3rd ed. New York: Freeman, 1988:50-5.
[65] Kim YJ, Sah RL, Doong JY, Grodzinsky AJ. Fluorometric assay of DNA in cartilage explants using Hoechst 33258. Anal Biochem 1988;174:168-176.
[66] Brian O. Enobakhare, Dan L. Bader, and David A. Lee. Quantification of Sulfated Glycosaminoglycans in Chondrocyte/Alginate Cultures, by Use of 1,9-Dimethylmethylene Blue. Anal Biochem 1996;243:189-191.
[67] Weadock K, Olson RM, Silver FH. Evaluation of collagen crosslinking techniques. Biomater Med Devices Artif Organs 1984;11:293-318.
[68] Khor E. Methods for the treatment of collagenous tissues for bioprostheses. Biomaterials 1997;18:95-105.
[69] Meade KR, Silver FH. Immunogenicity of collagenous implants. Biomaterials 1990;11:176-180.
[70] Nishi C, Nakajima N, Ikada Y. In vitro evaluation of Cytotoxicity of diepoxy compounds used for biomaterial modification. J Biomed Mater Res 1995;29:829–834.
[71] Schoen FJ, Harasaki H, Kim KM, Anderson HC, Levy RJ. Biomaterial- associated calcification: Pathology, mechanisms, and strategies for prevention. J Biomed Mater Res 1988;22:11–36.
[72] Speer DP, Chvapil M, Eskelson CD, Ulreich J. Biological effects of residual glutaraldehyde in glutaraldehyde-tanned collagen biomaterials. J Biomed Mater Res 1980;14:753–764.
[73] Sung HW, Huang RN, Huang LLH, Tsai CC, Chiu CT. Feasibility study of a natural crosslinking reagent for biological tissue fixation. J Biomed Mater Res 1998;42:560–567.
[74] Huang LLH, Sung HW, Tsai CC, Huang DM. Biocompatibility study of a biological tissue fixed with a naturally occurring crosslinking reagent. J Biomed Mater Res 1998;42;568–576.
[75] Sung HW, Huang RN, Huang LLH, Tsai CC. In vitro evaluation of cytotoxicity of a naturally occurring crosslinking reagent for biological tissue fixation. J Biomater Sci Polym Ed 1999;10:63–78.
[76] Touyama R, Takeda Y, Inoue K, Kawamura I, Yatsuzuka M, Ikumoto T, Shingu T, Yokoi T, Inouye H. Studies on the blue pigments produced from genipin and methylamine. I. Structures of the brownish-red pigments, intermediates leading to the blue pigments. Chem Pharm Bull 1994;42:668–673.
[77] Touyama R, Inoue K, Takeda Y, Yatsuzuka M, Ikumoto T, Moritome N, Shingu T, Yokoi T, Inouye H. Studies on the blue pigments produced from genipin and methylamine. II. On the formation mechanisms of brownish-red intermediates leading to the blue pigment formation. Chem Pharm Bull 1994;42:1571–1578.
[78] Kjellen L, Lindahl U (1991) Proteoglycans: structures and interactions. Annu Rev Biochem 1991;60:443–475.
[79] Nishikawa H., Mori I., Umemoto J. Influences of sulfated glycosaminoglycans on biosynthesis of hyaluronic acid in rabbit knee synovial membrane. Arch Biochem Biophys 1985;240:146–153.
[80] Nishikawa H., Mori I., Umemoto J. Glycosaminoglycan polysulfate-induced stimulation of hyaluronic acid synthesis in rabbit knee synovial membrane: involvement of binding protein and calcium ion. Arch Biochem Biophys 1988;266:201–209.
[81] Bernfield, M., Gotte, M., Park, P.W., Reizes, O., Fitzgerald, M.L., Lincecum, J., and Zako, M. Functions of cell surface heparan sulfate proteoglycans. Annu. Rev. Biochem 1999;68:729–777.
[82] Van Kuppevelt THSM, Veerkamp JH. Application of cationic probes for the ultrastructural localization of proteoglycans in basement membranes. Microsc Res Tech 1994;28:125-140.
[83] Vogel KG, Trotter JA. The effect of proteoglycans on the morphology of collagen fibrils formed in vitro. Collagen Rel Res 1987;7:105-114.
[84] Van Kuppevelt THSM, Janssen HMJ, Beuningen HM, et al. Isolation and characterization of a collagen fibril-associated dermatan sulphate proteoglycan from bovine lung. Biochim Biophys Acta 1987;926:296-309.
[85] Erlinger R. Glycosaminoglycans in porcine lung: an ultrastructural study using cupromeronic blue. Cell Tissue Res 1995;281:473-483.
[86] Chow G, Knudson CB, Homandberg G, Knudson W. Increased expression of CD44 in bovine articular chondrocytes by catabolic cellular mediators. J Biol Chem 1995;270:27734–27741.
[87] Holmes M.W., Bayliss M.T., Muir H.. Hyaluronic acid in human articular cartilage. Age-related changes in content and size. Biochem. J. 1988;250:435–441.
[88] Bayliss MT, Davidson C, Woodhouse SM, Osborne DJ. Chondroitin sulphation in human joint tissues varies with age, zone and topography. Acta Orthop Scand 1995;66(Suppl 266):22–25.
[89] Toyoda H, Shinomiya K, Yamanashi S, Koshiishi I, Immanari T. Microdetermination of unsaturated disaccharides produced from chondroitin sulfates in rabbit plasma by high performance liquid chromatography with flurometric detection. Anal Sci 1989;4:381–384.
[90] Hardingham TE, Fonsang AJ. Proteoglycans: many forms, many functions. FASEB J 1992;6:861–870.
[91] Anna H. K. Plaas, Leigh A. West, Shirley Wong-Palms, and Fred R. T. Nelson. Glycosaminoglycan Sulfation in Human Osteoarthritis J Biol Chem, 1998;273:12642-12649.
[92] Rizkalla, G., Reigner, A., Bogoch, E., and Poole, A. R. Studies of the articular cartilage proteoglycan aggrecan in health and osteoarthritis. Evidence for molecular heterogeneity and extensive molecular changes in disease. J. Clin. Invest. 1992;90:2268–2277.
[93] Vasan, N. Proteoglycans in normal and severely osteoarthritic human cartilage. Biochem. J. 1980;187:781–787.
[94] Benya PD, Padilla SR, Nimni ME. The progeny of rabbit articular chondrocytes synthesize collagen types I, III and type I trimer, but not type II. Verifications by cyanogens bromide peptide analysis. Biochemistry 1977;16:865–872.
[95] Grundmann K, Zimmermann B, Barrach HJ, Merker H-J. Behaviour of epiphyseal mouse chondrocyte populations in monolayer culture. Virchows Arch A Path Anat Histol 1980;389:167–187.
[96] Von Der Mark K. Immunological studies on collagen type transition in chondrogenesis. Curr Top Dev Biol 1980;14:199–225.
[97] Shakibaei M. Integrin expression on epiphyseal mouse chondrocytes in monolayer culture. Histol Histopathol 1995;10:339–349.
[98] Zhao, Q., Eberspaecher, H., Lefebvre, V. and De Crombrugghe, B. Parallel expression of Sox9 and Col2a1 in cells undergoing chondrogenesis. Dev. Dyn 1997;209:377-386.
[99] Kulyk, WM; Franklin, JL; Hoffman, LM. Sox9 expression during chondrogenesis in micromass cultures of embryonic limb mesenchyme. Experimental Cell Res. 2000;255(2):327-332.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 吳沂木(1999)。淺談資訊教育融入學科教學。班級經營,4(1),47-52。
2. 吳正己(2001)。從英特爾e教師計劃談資訊融入教學。資訊與教育,85,15-21。
3. 吳文中(2000)。從資訊教育融入各科談教師資訊素養的困境與因應之道。資訊與教育,79,31-38。
4. 王曉璿(1999)。資訊科技融入各科教學探究,菁莪季刊,10(4),18-24。
5. 尹玫君(2000)。國小老師的網路教學素養與培育。資訊與教育,79,13-19。
6. 何榮桂(2001)。從九年一貫新課程規劃看我國資訊教育未來的發展。資訊與教育,85,5-14。
7. 何榮桂(2002)。臺灣資訊教育的現況與發展─兼論資訊科技融入教學。資訊與教育,87,22-32。
8. 沈慶珩(2004)。資訊科技融入教學之概念、應用與活動設計。教育資料與圖書館學,42(1),139-155。
9. 呂聰賢(2002)。淺談資訊融入教學模式。北縣教育,41,47-49。
10. 林奇賢(1998)。網路學習環境的設計與應用。資訊與教育,67,34-49。
11. 邱瓊慧(2002)。中小學資訊科技融入教學之實踐。資訊與教育,88,3-9。
12. 陳淑貞(2004)。國小教師對於資訊科技融入教學的迷思與省思。師說, 180,11-14。
13. 張國恩(1999)。資訊科技融入各科教學之內涵與實施。資訊與教育,72,2-9。
14. 張國恩(2002)。從學習科技的發展看資訊科技融入教學之內涵。北縣教育,
15. 彭富源(2001)。資訊科技融入各科教學的困境與因應。研習資訊,18(3),