跳到主要內容

臺灣博碩士論文加值系統

(100.26.196.222) 您好!臺灣時間:2024/02/27 15:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉士軒
論文名稱:鹼性蛋白質酵素固定於幾丁聚醣之研究
指導教授:黃世傑黃世傑引用關係
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:95
中文關鍵詞:鹼性蛋白質酵素幾丁聚醣酵素固定化
相關次數:
  • 被引用被引用:0
  • 點閱點閱:233
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
對蛋白質的胜肽鍵(-CO-NH-)具有水解反應之催化性的酵素統稱為蛋白質水解酵素,其中鹼性絲氨酸蛋白質水解酵素(alkaline serine protease)有特別優越的經濟效益,最具代表性。鹼性絲氨酸蛋白質最大的特點就是在鹼性條件下,其活性仍十分穩定,故在應用方面是以清潔劑工業為主,但是同時也可以用於肉品、皮革加工、乳製品、食品加工方面。本論文在較佳的操作參數下,分別以共價固定法、活化法以及雙官能基固定法,將鹼性蛋白質酵素固定於幾丁聚醣上,其中以雙官能基固定法有最優越的活性表現。
在生化活性表現上,固定化酵素在環境pH值以及溫度的安定性方面都有所提升。在經過20次的重複使用後,雙官能基固定法的固定化酵素仍有62%的殘留活性,而共價固定法以及活化法的固定化酵素則較差,分別是51%和40%。在動力學參數方面,經過固定化之後的酵素其Km值有上升的趨勢,以雙官能基固定法所得到的酵素有最大的Km值;而Vm值則是有下降的趨勢,以共價固定法所得到的固定化酵素有最小之Vm值。此外,Km值與Vm值不會受交聯/活化時間、交聯/活化pH值與固定化時間等固定化參數的影響。反之,會受交聯/活化濃度、固定化pH值以及固定化溫度的影響。
總目錄
摘 要
謝 誌
總 目 錄 I
圖 目 錄 IV
表 目 錄 VII
第一章 緒論 1
1-1研究動機 1
1-2研究目的 2
第二章 文獻回顧 3
2-1 鹼性蛋白質酵素 3
2-2-1固定化擔體---幾丁聚醣(chitosan)來源與性質 6
2-2-2 幾丁聚醣顆粒製備 9
2-3 固定化技術 10
2-3-1 酵素固定化簡介 10
2-3-2 酵素固定化歷程 10
2-3-3 固定化方法 12
2-4 酵素固定化後之性質變化 19
2-5 酵素催化反應動力學 21
2-6 固定化酵素之應用 23
2-7 固定化酵素之穩定性探討 25
2-8 酵素專一性 26
2-9 酵素的活性部位 27
第三章 實驗材料與方法 28
3-1 實驗藥品 28
3-2 實驗設備 29
3-3 擔體製作方法與步驟 29
3-4 酵素固定化方法 30
3-5 酵素固定化之參數設定 31
3-6 分析方法 34
3-7 固定化酵素之生化活性探討 36
第四章 結果與討論 37
4-1共價固定法之較佳固定化參數 37
4-1-1 交聯劑pH值 37
4-1-2 交聯劑濃度 40
4-1-3 交聯時間 44
4-1-4 固定化pH值 47
4-1-5 固定化時間 52
4-1-6 固定化溫度 55
4-2 活化法之較佳固定化參數 59
4-2-1 活化劑pH值 59
4-2-2 活化劑濃度 62
4-2-3 活化時間 66
4-2-4 固定化pH值 69
4-2-5 固定化時間 73
4-2-6 固定化溫度 76
4-2-7 共價固定法與活化法之所有較佳參數整理 79
4-3 雙官能基固定法之固定程序探討 80
4-4 最適固定化參數所得固定化酵素之生化活性 82
4-4-1 反應溫度對活性的影響 82
4-4-2 反應pH值對活性的影響 83
4-4-3 保存溫度對活性的影響 84
4-4-4 保存pH值對活性的影響 85
4-4-5 固定化酵素的重複使用性 86
4-4-6 動力學參數 88
第五章 結論 90
第六章 參考文獻 91
[1] Abdel-Naby, M. A., Ismail, A. M. S., Ahmed, S. A. and Abdel-Fattah, A. F. Production and immobilization of alkaline protease from Bacillus mycoides. Bioresource Technology (1998), 64(3), 205-210.
[2] Anita, A. Sastry, A. and Hashim, A. Immobilization of urease using Amberlite MB-1. Bioprocess Engineering (1997), 17, 355-359.
[3] Anwar, A. and Saleemuddin, M. Alkaline proteases: a review. Bioresource Technology (1998), 64(3), 175-183.
[4] Barthomeuf, C., Pourrat, H. and Pourrat, A. Collagenolytic activity of a new semi-alkaline protease from Aspergillus niger. Journal of Fermentation and Bioengineering (1992), 73(3), 233-236.
[5] Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry (1976), 72(1-2), 248-254.
[6] Chellapandian, M. Preparation and characterization of alkaline protease immobilized on vermiculite. Process Biochemistry (1998), 33(2), 169-173.
[7] Chiou, S. H. and Wu, W. T. Immobilization of Candida rugosa lipase on chitosan with activation of the hydroxyl groups. Biomaterials (2003), 25(2), 197-204.
[8] Dalev, P. G. Utilization of waste feathers from poultry slaughter for production of a protein concentrate. Bioresource Technology (1994), 48(3), 265-267.
[9] Fernandez, L. R., Armisen, P., Sabuquillo, P. and Guisan, J. M. Immobilization of lipases by selective adsorption on hydrophobic supports. Chemistry and Physics of Lipids (1998), 93, 185-197.
[10] Godfrey, T. and West, S. I. Industrial enzymology, 2nd ed., Stockon Press, New York, 1996.
[11] Goldstein, L. A new polymer carrier for immobilization of proteins of water insoluble derivaties of pepsin and trypsin. Biochimica et Biophysica Acta (1973), 327, 132-137.
[12] Hedstrom, L., Szilagyi, L. and Rutter, W. J. Converting trypsin to chymotrypsin : the role of surface loops. Science (1992), 255(5049), 1249-1253.
[13] Juang, R. S., Wu, F. C. and Tseng, R. L. Solute adsorption and enzyme immobilization on chitosan beads prepared from shrimp shell wastes. Bioresource Technology (2001), 80(3), 187-193.
[14] Kalisz, H. M. Microbial proteinases. Advances in Biochemical Engineering and Biotechnology. (1998), 13, 1-65.
[15] Knorr, D. Use of chitinous polymers in food - a challenge for food research and development. Food Technology (1984), 38(1), 85-96.
[16] Kudrya, V. A. and Simonenko, I. A. Alkaline serine proteinase and lectin isolation from the culture fluid of Bacillus subtilis. Applied Microbiology and Biotechnology (1994), 41(5), 505-509.
[17] Kumar, C. G. and Takagi, H. Microbial alkaline proteases: from a bioindustrial viewpoint. Biotechnology Advances (1999), 17(7), 561-594.
[18] Martinek, K., Klibanov, A. M., Goldmacher, V. S. and Berezin, IV. The principles of enzyme stabilization 1. Increase in thermostability of enzymes covalently bound to a complementary surface of a polymer support in a multipoint fashion. Biochimica et Biophysica Acta (1977), 485, 1-12.
[19] Mojovic, L., Knezevic, Z., Popadic, R. and Jovanovic, S. Immobilization of lipase from Candida rugosa on a polymer support. Applied Microbiology and Biotechnology (1998), 50 , 676-681.
[20] Mozhaev, V. V. Stabilization of proteins by chemical methods. In : Stability and stabilization of enzymes, Elsevier, Amsterdam, London, 1993.
[21] Mi, F. L., Wong, T. B., Shyu, S. S. and Chang, S. F. Chitosan microspheres: modification of polymeric chem-physical properties of spray-dried microspheres to control the release of antibiotic drug. Journal of Applied Polymer Science (1999), 71(5), 747-759.
[22] Muzzarelli, R. A. A. Immobilization of enzymes on chitin and chitosan. Enzyme and Microbial Technology (1980), 2(3), 177-184.
[23] Nagashima, T., Watanabe, A. and Kise, H. Peptide synthesis by proteases in organic solvents: medium effect on substrate specificity. Enzyme and microbial technology (1992), 14(10), 842-847.
[24] Okuyama, K., Noguchi, K., Kanenari, M., Egawa, T., Osawa, K., and Ogawa, K. Structural diversity of chitosan and its complexes. Carbohydrate Polymers (1999), 41(3), 237-247.
[25] Patil, D. R., Rethwisch, D. G., and Dordick, J. S. Enzymic synthesis of a sucrose-containing linear polyester in nearly anhydrous organic media. Biotechnology and Bioengineering (1991), 37(7), 639-646.
[26] Roberts, G. A. F. and Taylor, K. E. The preparation and characterization of chitin beads for use in chromatography. In Chitin Chitosan. Proc. 4th Int. Conf., 1989.
[27] Rorrer, G. L., Yang, H. T. and Way, J. D. Synthesis of porous-magnetic chitosan beads for removal of cadmium ions from wastewater. Industrial & Engineering Chemistry Research (1993), 32(9), 2170-2178.
[28] Shuler, M.L. and Kargi, F. Bioprocess Engineering. Chapter3: Enzymes, Englewood Cliffs, New Jersey, 1992.
[29] Taylor, M. M., Bailey, D. G., and Feairheller, S. H. A review of the uses of enzymes in the tannery. Journal of the American Leather Chemists Association (1987), 82(6), 153-165.
[30] Varela, H., Ferrari, M. D., Belobrajdic, L., Vazquez, A. and Loperena, M. L. Skin unhairing proteases of Bacillus subtilis: production and partial characterization. Biotechnology Letters (1997), 19(8), 755-758.
[31] Voc, A. M. et al. Protein engineering current opinion in biotechnology (1996), 7: 367~368.
[32] 陳國誠,(1989),<微生物酵素工程學>,藝軒圖書出版社。
[33] 王三郎,(1991),<生物工學入門>,藝軒圖書出版社。
[34] 呂鋒洲,(1991),<基礎酵素學>,聯經出版社。
[35] 陳國誠,(2000),<生物固定化技術與產業應用>,茂昌出版社,pp.121~156。
[36] 王群超,(2001),固定Pseudomonas fluorescenes脂肪酵素於幾丁聚醣之研究,國立清華大學化學工程研究所碩士論文。
[37] 劉英俊,(2002),<酵素工程>,中央圖書,pp.261-262。
[38] 邱少華,洪佃玠,吳文騰,(2002),幾丁聚醣在固定化技術上之應用,幾丁質與幾丁聚醣生物技術應用研討會,大會手冊及論文,pp.25-33。
[39] 簡家豪,(2002),利用幾丁聚醣固定Candida rugosa Type Ⅶ 脂肪分解酵素之研究,國立清華大學化學工程研究所碩士論文。
[40] 吳文騰,(2003),<生物產業技術概論>,全華科技, pp.233-236。
[41] 洪佃玠,(2003),利用幾丁聚醣固定脂肪分解酵素之研究,國立清華大學化學工程研究所碩士論文。
[42] 彭志英,(2004),<食品酵素學>,九州圖書,台北市,pp.286-288。
[43] 鄭慈千,(2005),固定化酵素生產果寡糖與半乳寡糖,私立大同大學生物工程研究所博士論文。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top