跳到主要內容

臺灣博碩士論文加值系統

(44.192.95.161) 您好!臺灣時間:2024/10/12 11:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳向陽
研究生(外文):Hsiang-Yang Wu
論文名稱:高產量高長寬比金奈米棒的製備與多分支金奈米粒子的直接合成
論文名稱(外文):High Yield Synthesis of High Aspect Ratio Gold Nanorods and Direct Synthesis of Branched Gold Nanocrystals
指導教授:黃暄益
指導教授(外文):Michael Hsuan-Yi Huang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學系
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:75
中文關鍵詞:金奈米棒金奈米粒子植晶分支
外文關鍵詞:gold nanorodgold nanoparticleseeding growthbrchah
相關次數:
  • 被引用被引用:0
  • 點閱點閱:837
  • 評分評分:
  • 下載下載:96
  • 收藏至我的研究室書目清單書目收藏:0
本文發展出一項嶄新的高徑長比金奈米棒合成方法。 藉由改進傳統植晶法的合成方式,在合成過程中加入硝酸配合界面活性劑的作用,促使高長度且高產量高分散性的金奈米棒大量生成。
在傳統合成金奈米棒的實驗中,奈米金三角形片狀物是無法避免的副產物;為了降低金奈米三角片狀物的生成,在合成催化金核的實驗過程中修飾出新的奈米晶核粒子,並成功地取代了傳統的金核保護劑 (檸檬酸鈉),有效並成功地抑制了片狀物的產生。
利用紫外線光譜儀、掃描式和穿透式電子顯微鏡對於產物做定性分析和測定,結果都顯示出高徑長比與高產量的金奈米棒的合成非常地成功。
本文對於氫氧化鈉和左旋維他性C對於多分支金奈米粒子生成的影響作研究。 具有高表面積型態的多分支金奈米粒子是較為不穩定的活性奈米材料, 在室溫之下約1小時即會轉換成較為等向穩定性的球狀金奈米粒子。
實驗中利用紫外線光譜儀和穿透式電子顯微鏡,對於金奈米粒子的形態轉換在不同的時間下做即時監控與實驗對照,有效地對於多分支金奈米粒子的成長過程變化作定性分析研究。 並成功地在於低溫下阻止多分支奈米粒子的形態轉換,有效控制多分支金奈米粒子的穩定存在,使其多分支型態穩定存在達一個月以上。
We report a new development for the direct high-yield synthesis of high aspect ratio gold nanorods. By using a modified seed-mediated synthesis approach for the preparation of high aspect ratio gold nanorods with the addition of an appropriate amount of nitric acid during nanorod growth, uniform and monodisperse gold nanorods were synthesized in large quantity.
The formation of triangular nanoplate by-products was substantially reduced by replacing trisodium citrate with CTAB surfactant as the capping agent in the preparation of gold seeds. The nanorods have an average length of 355.3 ± 31.3 nm and an average diameter of 18.7 nm, giving them an average aspect ratio of 19. The ultra-small gold seeds used for nanorod growth are ~1–2 nm in diameter and show a weak absorption band centered at ~480 nm. The nanorods show a transverse surface plasmon resonance (SPR) absorption band at 497 nm and a longitudinal SPR band in the near-infrared (NIR) region.
We report a synthesis of branched gold nanocrystals by the addition of a suitable amount of NaOH to an aqueous solution of cetyltrimethylammonium bromide, HAuCl4, and ascorbic acid. NaOH serves as an effective reducing agent to induce the formation of branched gold nanocrystals. The branched nanocrystals were formed within minutes of reaction and showed monopod, bipod, tripod, and tetrapod structures. The branched nanocrytals quickly transformed into spherical nanoparticles within 1 h of reaction, and the process was essentially complete after 2 days of reaction.
The morphological transformation has been monitored by both UV–vis absorption spectroscopy and electron microscopy. The appearance of two major absorbance bands for the branched gold nanocrystals eventually became only a single band at 529 nm for the spherical nanoparticles. The resulting nanoparticles are single crystalline with diameters of 20–50 nm and without the presence of twinned boundaries. By keeping the freshly prepared branched nanocrystals in a refrigerator at 4 °C, their multipod structure can be preserved for over a month without significant spectral shifts.
Abstract i
Table of contant iii
List of figure v

CHAPTER 1 A SURVEY ON GOLD NANORODS
1.1 Introduction 1
1.2 Synthesis of Gold Nanorods
with Various Approaches 4
1.2.1 Seed-Mediated Growth Method 4
1.2.2 Electrochemical Synthesis Method 5
1.2.3 Photochemical Synthesis of Gold Nanorods 7
1.3 Applications of Gold Nanorods 9
1.3.1 End-to-End Assembly of Gold Nanorods 9
1.3.2 Cancer Cell Imaging and Photothermal
Therapy Useing Gold Nanorods 11
1.3.3 DNA-Gold Nanorod Conjugates for Remote Control
of Localized Gene Expression by Near Infrared
Irradiation 11
1.4 References 14






CHAPTER 2 SEED MEDIATED SYNTHESIS OF HIGH ASPECT RATIO GOLD NANORODS WITH NITRIC ACID
2.1 Introduction 16
2.2 Experimental Section 18
2.2.1 Preparation of Gold Seeds 18
2.2.2 Preparation of Growth Solution 18
2.2.3 Synthesis of High Aspect Ratio Gold Nanorods 18
2.3 Results and Discussion 19
2.4 Conclusion 31
2.5 References 33

CHAPTER 3 DIRECT HIGH YIELD SYNTHESIS OF HIGH ASPECT RATIO GOLD NANORODS
3.1 Introduction 36
3.2 Experimental Section 38
3.2.1 Preparation of Gold Seeds 38
3.2.2 Preparation of Growth Solution 39
3.2.3 Synthesis of High Aspect Ratio Gold Nanorods 39
3.3 Results and Discussion 40
3.4 Conclusion 52
3.5 References 54

CHAPTER 4 DIRECT SYNTHESIS OF BRANCHED GOLD NANOCRYSTALS ADN THEIR TRANSFORMATION INTO
SPHERIAL NANOPARTICLES
4.1 Introduction 56
4.2 Experimental Section 58
4.3 Results and Discussion 59
4.4 Conclusion 72
4.5 References 74
CHAPTER 1 A SURVEY ON GOLD NANORODS
(1) Valden, M.; Lai, X.; Goodman, D. W. Science 1998, 281, 1647.
(2) Link, S.; El-Sayed, M. A. J. Phys. Chem. B 1999, 103, 8410.
(3) Mirkin, C. A. Inorg. Chem. 2000, 39, 2258.
(4) Lin, S.-Y.; Liu, S.-W.; Lin, C.-M.; Chen, C.-H. Anal. Chem. 2002, 74, 330.
(5) Kim, F.; Song, J. H.; Yang, P. J. Am. Chem. Soc. 2002, 124, 14316.
(6) Huang, Y.; Duan, X.; Lieber, C. M. Science 2001, 291, 630.
(7) Maier, S. A.; Brongersma, M. L.; Kik, P, G.; Meltzer, S.; Requichia, A. A. G.; Atwater, H. Adv. Mater. 2001, 13, 1501.
(8) Tkachenko, A. G.; Xie, H.; Coleman, D.; Glomm, W.; Ryan, J.; Anderson, M. F.; Franzen, S.; Feldheim, D. L. J. Am. Chem. Soc. 2003, 125, 4700.
(9) Katz, E.; Willner, I. Angew. Chem., Int. Ed. Engl. 2004, 43, 6042.
(10) Fan, H.; Lu, Y.; Stump, A.; Reed, S. T.; Baer, T.; Schunk, R.; Perez-Luna, V.; Lopez, G. P.; Brinker, C. J. Nature 2000, 405, 56.
(11) Caswell, K. K.; Wilson, J. N.; Bunz, U. H. F.; Murphy, C. J. J. Am. Chem. Soc. 2003, 125, 13914.
(12) Thomas, K. G.; Barazzouk, S.; Ipe, B. I.; Joseph, S. T. S.; Kamat, P. V. J. Phys. Chem. B 2004, 108, 13066.
(13) Dujardin, E.; Hsin, L.-B.; Wang, C. R. C.; Mann, S. Chem. Commun. 2001, 1264.
(14) Murphy, C. J.; Sau, T. K.; Gole, A. M.; Orendorff, C. J.; Gao, J.; Gou, L.; Hunyadi, S. E.; Li, T. J. Phys. Chem. B. 2005, 109, 13857.
(15) Busbee, B. D.; Obare, S. O.; Murphy, C. J. Adv. Mater. 2003, 15, 414.
(16) Murphy, C. J.; Jana, N. R. Adv. Mater. 2002, 14, 80.
(17) Gao, J.; Bender, C. M.; Murphy, C. J. Langmuir 2003, 19, 9065.
(18) Yu, Y. Y.; Chang, S. S.; Lee, C. L.; Wang, C. R. C. J. Phys. Chem. B. 1997, 101, 6661.
(19) Chang, S. S.; Shih, C. W.; Chen, C. D.; Lai, W. C.; Wang, C. R. C. Langmuir 1999, 15, 701.
(20) Hung, X.; El-Sayed, I. H.; Qian, W.; El-Sayed, M. A. J. Am. Chem. Soc. 2006, 128, 2115.
(21) Chen, C. C.; Lin, Y. P.; Wang, C. W.; Tzeng, H. C.; Wu, C. H.; Chen, Y. C.; Chen, C.; Chen, L. C.; Wu, Y. C. J. Am. Chem. Soc. 2006, 128, 3709.
(22) Chou, C. H.; Chen, C. D.; Wang, C. R. C. J. Phys. Chem. B 2005, 109, 11135.

CHAPTER 2 Seed-Mediated Synthesis of High Aspect Ratio Gold Nanorods with Nitric Acid
(1) Murphy, C. J.; Sau, T. K.; Gole, A. M.; Orendorff, C. J.; Gao, J.; Gou, L.; Hunyadi, S. E.; Li, T. J. Phys. Chem. B 2005, 109, 13857.
(2) (a) Yu, Y.-Y.; Chang, S.-S.; Lee, C.-L.; Wang, C. R. C. J. Phys. Chem. B 1997, 101, 6661. (b) Chang, S.-S.; Shih, C.-W.; Chen, C.-D.; Lai, W.-C.; Wang, C. R. C. Langmuir 1999, 15, 701.
(3) Nikoobakht, B.; El-Sayed, M. A. Chem. Mater. 2003, 15, 1957.
(4) Kim, F.; Song, J. H.; Yang, P. J. Am. Chem. Soc. 2002, 124, 14316.
(5) Niidome, Y.; Nishioka, K.; Kawasaki, H.; Yamada, S. Chem. Commun. 2003, 2376.
(6) Jana, N. R.; Gearheart, L.; Murphy, C. J. Adv. Mater. 2001, 13, 1389.
(7) (a) Jana, N. R.; Gearheart, L.; Murphy, C. J. Chem. Commun. 2001, 617. (b) Murphy, C. J.; Jana, N. R. Adv. Mater. 2002, 14, 80.
(8) Hu, J.-Q.; Chen, Q.; Xie, Z.-X.; Han, G.-B.; Wang, R.-H.; Ren, B.; Zhang, Y.; Yang, Z.-L.; Tian, Z.-Q. Adv. Funct. Mater. 2004, 14, 183.
(9) Sönnichsen, C.; Alivisatos, A. P. Nano Lett. 2005, 5, 301.
(10) Nikoobakht, B.; El-Sayed, M. A. J. Phys. Chem. A 2003, 107, 3372.
(11) (a) Lin, S. Y.; Liu, S.-W.; Lin, C.-M.; Chen, C.-h. Anal. Chem. 2002, 74, 330. (b) Lin, S.-Y.; Chen, C.-h.; Lin, M.-C.; Hsu, H.-F. Anal. Chem. 2005, 77, 4821. (c) Liu, J.; Lu, Y. J. Am. Chem. Soc. 2004, 126, 12298.
(12) (a) Taton, T. A.; Mirkin, C. A.; Letsinger, R. L. Science 2000, 289, 1757. (b) Mucic, R. C.; Storhoff, J. J.; Mirkin, C. A.; Letsinger, R. L. J. Am. Chem. Soc. 1998, 120, 12674.
(13) Caswell, K. K.; Wilson, J. N.; Bunz, U. H. F.; Murphy, C. J. J. Am. Chem. Soc. 2003, 125, 13914.
(14) Chang, J.-Y.; Wu, H.; Chen, H.; Ling, Y.-C.; Tan, W. Chem. Commun. 2005, 1092.
(15) Thomas, K. G.; Barazzouk, S.; Ipe, B. I.; Joseph, S. T. S.; Kamat, P. V. J. Phys. Chem. B 2004, 108, 13066.
(16) Dujardin, E.; Hsin, L.-B.; Wang, C. R. C.; Mann, S. Chem. Commun. 2001, 1264.
(17) Orendorff, C. J.; Hankins, P. L.; Murphy, C. J. Langmuir 2005, 21, 2022.
(18) Busbee, B. D.; Obare, S. O.; Murphy, C. J. Adv. Mater. 2003, 15, 414.
(19) (a) Jana, N. R.; Gearheart, L.; Murphy, C. J. J. Phys. Chem. B 2001, 105, 4065. (b) Jana, N. R. Chem. Commun. 2003, 1950.
(20) Gole, A.; Murphy, C. J. Chem. Mater. 2004, 16, 3633.
(21) Gao, J.; Bender, C. M.; Murphy, C. J. Langmuir 2003, 19, 9065.
(22) Sau, T. K.; Murphy, C. J. Langmuir 2004, 20, 6414.
(23) Kuo, C.-H.; Chiang, T.-F.; Chen, L.-J.; Huang, M. H. Langmuir 2004, 20, 7820.
(24) Kuo, C.-H.; Huang, M. H. Langmuir 2005, 21, 2012.
(25) Johnson, C. J.; Dujardin, E.; Davis, S. A.; Murphy, C. J.; Mann, S. J. Mater. Chem. 2002, 12, 1765.
(26) Gai, P. L.; Harmer, M. A. Nano Lett. 2002, 2, 771.
(27) Hernádez, J.; Solla-Gullón, J.; Herrero, E.; Aldaz, A.; Feliu, J. M. J. Phys. Chem. B 2005, 109, 12651.
(28) Obare, S. O.; Jana, N. R.; Murphy, C. J. Nano Lett. 2001, 1, 601.
(29) Brioude, A.; Jiang, X. C.; Pileni, M. P. J. Phys. Chem. B 2005, 109, 13138.
(30) Malikova, N.; Pastoriza-Santos, I.; Schierhorn, M.; Kotov, N. A.; Liz-Marzán, L. M. Langmuir 2002, 18, 3694.

CHAPTER 3 Direct High Yield Synthesis of High Aspect Ratio Gold Nanorods
(1) (a) Caswell, K. K.; Wilson, J. N.; Bunx, U. H. F.; Murphy, C. J. J. Am. Chem. Soc. 2003, 125, 13914. (b) Chang, J.-Y.; Wu, H.; Chen, H.; Ling, Y.-C.; Tan, W. Chem. Commun. 2005, 1092. (c) Thomas, K. G.; Barazzouk, S.; Ipe, B. I.; Joseph, S. T. S.; Kamat, P. V. J. Phys. Chem. B 2004, 108, 13066.
(2) Sudeep, P. K.; Joseph, S. T. S.; Thomas, K. G. J. Am. Chem. Soc. 2005, 127, 6516.
(3) (a) Orendorff, C. J.; Hankins, P. L.; Murphy, C. J. Langmuir 2005, 21, 2022. (b) Dujardin, E.; Hsin, L.-B.; Wang, C. R. C.; Mann, S. Chem. Commun. 2001, 1264.
(4) (a) Chang, S.-S.; Shih, C.-W.; Chen, C.-D.; Lai, W.-C.; Wang, C. R. C. Langmuir 1999, 15, 701. (b) Yu, Y.-Y.; Chang, S.-S.; Lee, C.-L.; Wang, C. R. C. J. Phys. Chem. B 1997, 101, 6661.
(5) (a) Niidome, Y.; Nishioka, K.; Kawasaki, H.; Yamada, S. Chem. Commun. 2003, 2376. (b) Kim, F.; Song, J. H.; Yang, P. J. Am. Chem. Soc. 2002, 124, 14316.
(6) (a) Jana, N. R. Small 2005, 1, 875. (b) Sau, T. K.; Murphy, C. J. Langmuir 2004, 20, 6414. (c) Nikoobakht, B.; El-Sayed, M. A. Chem. Mater. 2003, 15, 1957.
(7) Murphy, C. J. Sau, T. K.; Gole, A. M.; Orendorff, C. J.; Gao, J.; Gou, L.; Hunyadi, S. E.; Li, T. J. Phys. Chem. B 2005, 109, 13857.
(8) (a) Gole, A.; Murphy, C. J. Chem. Mater. 2004, 16, 3633. (b) Gao, J.; Bender, C. M.; Murphy, C. J. Langmuir 2003, 19, 9065.
(9) Jana, N. R. Chem. Commun. 2003, 1950.
(10) Wu, H.-Y.; Chu, H.-C.; Kuo, T.-J.; Kuo, C.-L.; Huang, M. H. Chem. Mater. 2005, 17, 6447.
(11) Chu, H.-C.; Kuo, C.-H.; Huang, M. H. Inorg. Chem. 2006, 45, 808.
(12) Orendorff, C. J.; Murphy, C. J. J. Phys. Chem. B 2006, 110, 3990.
(13) Tao, A.; Kim, F.; Hess, C.; Goldberger, J.; He, R.; Sun, Y.; Xia, Y.; Yang, P. Nano Lett. 2003, 3, 1229.
(14) Brioude, A.; Jiang, X. C.; Pileni, M. P. J. Phys. Chem. B 2005, 109, 13138.
(15) Pérez-Juste, J.; Liz-Marzán, L. M.; Carnie, S.; Chan, D. Y. C.; Mulvaney, P. Adv. Funct. Mater. 2004, 14, 571.
(16) Berr, S.; Jones, R. R. M.; Johnson, J. S., Jr. J. Phys. Chem. 1992, 96, 5611.
(17) Lin, H.-P.; Liu, S.-B.; Mou, C.-Y.; Tang, C.-Y. Chem. Commun. 1999, 583.

CHAPTER 4 Direct Synthesis of Branched Gold Nanocrystals and Their Transformation into Spherical Nanoparticles
(1) Chen, S.; Wang, Z. L.; Ballato, J.; Foulger, S. H.; Carroll, D. L. J. Am. Chem. Soc. 2003, 125, 16186.
(2) (a) Hao, E.; Bailey, R. C.; Schatz, G. C.; Hupp, J. T.; Li, S. Nano Lett. 2004, 4, 327. (b) Hao, E.; Schatz, G. C.; Hupp, J. T. J. Fluoresc. 2004, 14, 331.
(3) Sau, T. K.; Murphy, C. J. J. Am. Chem. Soc. 2004, 126, 8648.
(4) Kuo, C.-H.; Huang, M. H. Langmuir 2005, 21, 2012.
(5) Xiao, Y.; Shlyahovsky, B.; Popov, I.; Pavlov, V.; Willner, I. Langmuir 2005, 21, 5659.
(6) Yamamoto, M.; Kashiwagi, Y.; Sakata, T.; Mori, H.; Nakamoto, M. Chem. Mater. 2005, 17, 5391.
(7) Herricks, T.; Chen, J.; Xia, Y. Nano Lett. 2004, 4, 2367.
(8) Teng, X.; Yang, H. Nano Lett. 2005, 5, 885.
(9) Zhong, X.; Feng, Y.; Lieberwirth, I.; Knoll, W. Chem. Mater. 2006, ASAP.
(10) Hoefelmeyer, J. D.; Niesz, K.; Somorjai, G. A.; Tilley, T. D. Nano Lett. 2005, 5, 435.
(11) Zettsu, N.; McLellan, J. M.; Wiley, B.; Yin, Y.; Li, Z.-Y.; Xia, Y. Angew. Chem. Int. Ed. 2006, 45, 1288.
(12) Wu, H.-Y.; Chu, H.-C.; Kuo, T.-J.; Kuo, C.-L.; Huang, M. H. Chem. Mater. 2005, 17, 6447.
(13) (a) Chang, S.-S.; Shih, C.-W.; Chen, C.-D.; Lai, W.-C.; Wang, C. R. C. Langmuir 1999, 15, 701. (b) Yu, Y.-Y.; Chang, S.-S.; Lee, C.-L.; Wang, C. R. C. J. Phys. Chem. B 1997, 101, 6661.
(14) Kuo, C.-H.; Chiang, T.-F.; Chen, L.-J.; Huang, M. H. Langmuir 2004, 20, 7820.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 俞筱鈞(1987)。台北市高成就職業婦女之心理壓力與適應研究之初探。中華心理衛生學刊,3(2),137-154。
2. 林純文(1995)。國民小學組織氣候、教師工作壓力及其因應方式之研究。國立屏東師範學院國民教育研究所碩士論文。
3. 翁萃芳(2002)。台灣地區警察人員的工作壓力。警學叢刊,32(5),33-66。
4. 周玉慧(1997)。社會支持之平衡性與身心健康-台灣青年學生之分析。人文及社會科學集刊,3,162-198。
5. 沈湘縈(1986)。警察工作壓力及其輔導策略之探討。警學叢刊,17(2),32-39。
6. 吳學燕(1994)。警察人性化管理問題之探討。警學叢刊,24(1),31-46。
7. 吳學燕(1985)。警察的壓力與管理。警學叢刊,25(4 ),3-21。
8. 張錦麗(1998)。影響基層員警適應與求助因素的探討。警專學報,2(4),25-33。
9. 許士軍(1977)。工作滿足、個人特徵與組織氣候---文獻探討及實證研究。國立政治大學學報,35,13-56。
10. 陳明傳(1998)。論警察的工作壓力。警學叢刊,24(1),3-16。
11. 陸洛(1997)。工作壓力之歷程:理論與研究的對話。中華心理衛生學刊,4(10),20-51。
12. 賈樂吉(1993)。警察組織文化之探討。警學叢刊,24(1),127-141。
13. 蕭文(1998)。警察眷屬在警察壓力紓解過程中之角色與功能。警光雜誌,5,38-39。
14. 繆敏志(1993)。工作壓力之理論基礎與模式及其管理方法。中國行政,53,22。