跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.85) 您好!臺灣時間:2025/01/21 15:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李奕賢
研究生(外文):Yi-Hsien Lee
論文名稱:鐵酸鉍複鐵式薄膜之晶體成長與分析
論文名稱(外文):Crystal growth and characterizations of multiferroic BiFeO3 thin Films
指導教授:吳振名
指導教授(外文):Jenn-Ming Wu
學位類別:博士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:94
語文別:英文
論文頁數:209
中文關鍵詞:複鐵式鐵電性磁電磊晶鐵酸鉍
外文關鍵詞:MultiferroicFerroelectricMagnetoelectricEpitaxialBismuth Ferrite
相關次數:
  • 被引用被引用:3
  • 點閱點閱:621
  • 評分評分:
  • 下載下載:57
  • 收藏至我的研究室書目清單書目收藏:1
鐵酸鉍(BiFeO3,BFO)複鐵式材料,具結構、電、磁的序化而同時具有鐵電性(Tc~1100K)及反鐵磁特性(TN~640K),其優異的鐵電/壓電性以及獨特的磁電共存特性,引起廣泛的研究。本文主要研究BFO薄膜之晶體結構、化學組態、電性、磁性及奈米檢測。藉由射頻磁控濺鍍法(RF-magnetron sputtering)低溫製備純鈣鈦礦結晶相之BFO薄膜,隨機晶向,(100)及(111)優選晶向之晶體結構分別於白金基版(Pt/TiOx/SiO2/Si,Pt),鎳酸鑭基板(LaNiO3/Pt/TiOx/SiO2/Si,LNO)及鉛酸鋇基板(BaPbO3/Pt/TiOx/SiO2/Si,BPO)上多晶成長,於鎳酸鑭電極及鐵酸鑭緩衝層之氧化鎂單晶基版(LaNiO3/LaFeO3/MgO)異質磊晶成長(100)指向之磊晶薄膜, 藉由改變基版及底電極材料得到不同晶體結構之純相BFO薄膜。
BFO薄膜之化學組態,明顯受到工作壓力及製程溫度的影響,藉由適當控制製程參數,可得到穩定的薄膜化學組態。並探討薄膜晶向對高優選BFO薄膜於晶體成長、表面形貌、電性及磁性的影響,藉由掃描式穿透顯微鏡之高角度環型暗場顯像術(Scanning Transmission Electron Microscope High-Angle Annular Dark-Field,STEM-HAADF)分析薄膜/電極介面及薄膜化學均勻性。藉由掃描式壓電力顯微鏡 (Scanning Probe Microscopy,SPM),探討奈米尺度下的物性及電性。藉由添加鑭(La)元素,改善薄膜結晶性及表面粗糙度,部分取代鉍原子造成晶格體積的增加,造成介電、鐵電及磁特性的增進。
Multiferroics BiFeO3 (BFO), exhibiting simultaneously ferroelectricity (Tc~1100K) and anti-ferromagnetism (TN~640K), have attracted extensively attention for their coupled electric, magnetic, and structure order parameters in the same phase. The crystal structure, chemical configuration, nanoscale characterization, electric and magnetic properties were investigated is this study. The pure perovskite phase of BFO films were deposited by rf-magnetron sputtering at low processing temperature. The crystal structure of the BFO films was significantly influenced by the substrate and the bottom electrodes. The BFO film was grown with random orientation on Pt/TiOx/SiO2/Si (Pt), whereas highly (100)- and (111)-oriented ones were obtained on LaNiO3/Pt/TiOx/SiO2/Si (LNO) and BaPbO3/Pt/TiOx/SiO2/Si (BPO), respectively. The BFO-based films were hetero-epitaxially grown on the LaNiO3/LaFeO/MgO single crystal substrates.
The chemical configuration of the films, which significantly depended on working pressure and temperature, was enhanced by well-controlled processing parameters. The orientation dependence in the crystal growth, electric properties and magnetic behavior of BFO films were examined. The film/electrode interface and chemical homogeneity of the films were characterized by the scanning transmission electron microscope high-angle annular dark-field imaging (STEM-HAADF). Nanoscale characterization of the BFO films was studied by scanning probe microscopy (SPM). With the partial substitution of lanthanum (La) ions for bismuth ions, the significant enhancement in the dielectric, ferroelectric and magnetic performance of BFO films was attributed to the improved crystallinity, smooth surface, and increased lattice volume.
ABSTRCT (Chinese) I
ABSTRCT (English) III
ACKNOWLEDGEMENT (Chinese) V
CONTENTS VII
LIST OF TABLES XIII
LIST OF FIGURES XIV

1. Introduction 1
1.1 Multiferroic BiFeO3 materials 1
1.2 Motivation 3
1.3 Outline of the Dissertation 5

2. Background study 6
2.1 Electric properties of ferroelectric materials 7
2.1.1.Perovskite structure 7
2.1.2. Symmetry and electric properties in the perovskite 9
2.1.3. Ferroelectricity 10
2.1.4. Piezoelectricity 12
2.1.5. Dielectric and ferroelectric theory 13
2.1.6. Domain structure 15
2.1.7. Reliability of ferroelectric materials 17
2.2 Magnetism of materials 19
2.2.1 Magnetism in transition-metal-based ionic crystals 19
2.2.2 Direct exchange 21
2.2.3 Super-exchange 23
2.2.4 Phenomenon of exchange bias 23
2.3 Multiferroic materials 25
2.3.1 The coexistence of ferroelectric and magnetic order 25
2.3.2 Single-phase multiferroic materials 29
2.3.3 Multiferroic composite and heterostructure 30
2.3.4 Magnetoelectric coupling phenomenon 32
2.4 BiFeO3 materials 33
2.4.1 Crystal structure 33
2.4.2 Electric characteristics 34
2.4.3 Magnetic characteristics 36
2.4.4 Major challenge 39

3. Experimental procedures 51
3.1 Substrate system and sample structure 51
3.1.1 Pt / TiOx / Ti / SiOx / Si substrate 51
3.1.2 Sample structure 51
3.2 Preparation of electrodes 52
3.2.1 Platinum upper electrode 52
3.2.2 LaNiO3 bottom electrode 52
3.2.3 BaPbO3 bottom electrode 53
3.3 Fabrication of BiFeO3–based thin films 53
3.4 Hetero-epitaxial growth 54
3.4.1 BiFeO3/LaNiO3/ LaFeO3/MgO(100) 54
3.4.2 BiFeO3/LaNiO3 / STO 54
3.3.3 BiFeO3/BaPbO3 / STO 54
3.5 Characterization 55
3.4.1 Structure analysis 55
A. X-ray Diffraction (XRD) 55
B. Scanning Transmission Electron Microscopy (STEM) 55
C. Scanning Electron Microscope (SEM) 56
3.4.2 Chemical analysis 56
A. Auger Electron Spectroscopy (AES) 56
B. X-ray Photoelectron Spectroscopy (XPS) 57
C. Energy Dispersive X-ray Spectroscopy (EDS) 57
3.4.3 Electric analysis 57
A. Leakage measurement 58
B. Dielectric measurement 58
C. Ferroelectric measurement 58
3.4.4 Magnetic analysis 59
A. Vibration Sample Microscopy (VSM) 59
3.4.5 Nano-scaled characterization 59
A. Atomic Force Microscopy (AFM) 59
B. Piezoresponse Force Microscopy (PFM) 60

4. Low-temperature growth and surface chemistry of BiFeO3 thin films 69
4.1 Introduction 69
4.2 Experimental Details 70
4.3 Results and discussion 72
4.3.1 Crystal growth and microstructure of BiFeO3 thin films 72
A. Temperature effect 72
B. Working pressure effect 73
C. Ar/O2 ratio effect 75
D. Target stoichiometry 76
4.3.2 Surface chemistry of BiFeO3 thin films 77
A. Temperature effect 77
B. Working pressure effect 77
4.4 Conclusion. 79

5. Crystal growth, interface characterization and multiferroic properties of the highly oriented BiFeO3 thin films 89
5.1 Introduction 89
5.2 Experimental Details 91
5.3 Results and discussion 92
5.3.1 Crystal growth of highly oriented BiFeO3 films 92
5.3.2 Interface characterization of highly oriented BiFeO3 films 93
5.3.3 Orientation effect in multiferroic properties 95
A. Leakage behavior 95
B. Dielectric properties 97
C. Ferroelectric properties 97
D. Magnetic properties 98
E. NiFe/BFO heterostructure 98
5.4 Conclusion 101

6. The influence of La-doping in multiferroic properties of BiFeO3 films 118
6.1 Introduction 118
6.2 Experimental Details 120
6.3 Results and discussion 121
6.3.1 The La-substitution effect in crystal structure 121
6.3.2 The La-substitution effect in surface morphology 122
6.3.3 The La-substitution effect in electric properties 122
6.3.4 The La-substitution effect in ferroelectric reliability 124
6.3.5 The La-substitution effect in magnetic properties 125
6.4 Conclusion 125

7. Nanoscale characterizations of BiFeO3 thin films 134
7.1 Introduction 134
7.2 Experimental Details 135
7.3 Results and discussion 137
7.3.1 Hysteresis measurement of randomly oriented BFO film 137
7.3.2 The influence of crystalline orientation in domain structure of BiFeO3 films 139
7.3.3 Poling of the BiFeO3 films 141
7.4 Conclusion. 143

8. Epitaxial growth of the La-substituted BiFeO3/LaNiO3 hetero-structure films 153
8.1 Introduction 153
8.2 Experimental Details 155
8.3 Results and discussion 155
8.3.1 Crystal structure of the of the hetero-structure films 155
8.3.2 Surface morphology of the hetero-structure films 157
8.3.3 Multiferroic properties of the of the hetero-structure film 158
8.4 Conclusion 161

9. Conclusion 172

Appendix 1 Epitaxial growth of LaFeO3 thin films 176
A.1 Introduction 176
A.2 Experimental Details 178
A.3 Results and discussion 180
A.3.1 Crystal structure 180
A.3.2 Chemical configurations 182
A.3.3 Surface morphology 183
A.4 Conclusion 184


References 191
Publications 208
1. N. A. Hill, J. Phys. Chem. B 104, 6694 (2000).
2. N. A. Hill, A. Filippetti, J. Magn. and Mag. Mater. 242-245, 976 (2002)
3. R. Seshadri and N. A. Hill, Chem. Mater. 13, 2892 (2001)
4. N. Hur, S. Park, P. A. Sharma, J. S. Ahn, S. Guha, and S-W. Cheong, Nature (London) 429, 392 (2004)
5. T. Kimura, T. Goto, H. Schintani, K. Ishizaka. T. Arima, and Y. Tokura, Nature (London) 426, 55 (2003)
6. M. Fiebig, Th. Lottermoser, D. Frohlich, A. V. Golsev, and R. V. Pisarev, Nature (London) 419, 819 (2002)
7. J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wuttig, and R. Ramesh, Science 299, 1719 (2003).
8. G. A. Smolenskii and I. E. Chupis, Sov. Phys. Usp. 25, 475 (1982)
9. S. V. Kiselev, R. P. Ozerov, and G. S. Zhadanov, Sov. Phys. 7, 742 (1963)
10. N. N. Krainik et al., Sov. Phys. 8, 654 (1966)
11. I. G. Ismailzade, Soviet Sov. Phys. 11, 747 (1967)
12. C. Michel er al., Solid state comm. 7, 701 (1969)
13. J. R. Teague, R. G.erson, and W. J. James, Solid State Comm. 122, 1073 (1970).
14. S. Y. Yang, F. Zavaliche, L. Mohaddes-Ardabili, V. Vaithyanathan, D. G. Schlom, Y. J. Lee, Y. H. Chu, M. P. Cruz, Q. Zhan, T. Zhao, R. Ramesh, Appl. Phys. Lett. 87, 102903 (2005).
15. F. Bai, J. Wang, M. Wuttig, J. Li, N. Wang, A. P. Pyatakov, A. K. Zvezdin, L. E. Cross, and D. Viehland, Appl. Phys. Lett. 86, 032511 (2005).
16. J. Wang, H. Zheng, Z. Ma, S. Prasertchoung, M. Wuttig, R. Droopad, J. Yu, K. Eisenbeiser, and R. Ramesh, Appl. Phys. Lett. 85, 2574 (2004).
17. J. Li, J. Wang, M. Wuttig, R. Ramesh, H. Zheng, N. Wang, B. Ruette, A. P. Pyatakov, A. K. Zvezdin, and D. Viehland, Appl. Phys. Lett. 84, 5261 (2004).
18. M. M. Kumar, V. R. Palker, K. Srinivas, and S. V. Suryanarayana, Appl. Phys. Lett. 76, 2764 (2000).
19. V. R. Palker, J. John, and R. Pinto, Appl. Phys. Lett. 80, 1628 (2002).
20. V. R. Palker, K. G. Kumara, and S. K. Malik, Appl. Phys. Lett. 84, 2856 (2004).
21. V. R. Palker, D. C. Kundaliya, S. K. Malik, and S. Bhattacharya, Phys. Rev. B 69, 212102 (2004)
22. K. Y. Yun, M. Noda, and M. Okuyama, Appl. Phys. Lett. 83, 3981 (2003).
23. K. Y. Yun, M. Noda, M. Okuyama, H. Saeki, H. Tabata and K. Saito, J. Appl. Phys. 96, 3399 (2004).
24. K. Y. Yun, D. Ricinschi, T. Kanashima, M. Noda, and M. Okuyama, Jpn. J. Appl. Phys. 43, L647 (2004).
25. K. Y. Yun, M. Noda, and M. Okuyama, J. Korean Phys. Soc. 42, S1153 (2003).
26. S. Lakovlev, C. H. Solterbeck, M. Kuhnke, and M. Es-Souni, J. Appl. Phys. 97, 094901 (2005).
27. H. Uchida, R. Ueno, H. Nakaki, H. Funakubo, and S. Koda, Jpn. J. Appl. Phys. 44, L561 (2005).
28. Y. P. Wang, L. Zhou, M. F. Zhang, X. Y. Chen, J. M. Liu, and Z. G. Liu, Appl. Phys. Lett. 84, 1731 (2004).
29. Y. H. Lee, J. M. Wu, Y. C. Chen, Y. H. Lu, H. N. Lin, Electrochem. Solid State Lett. 10, F43 (2005).
30. Y. H. Lee, C. S. Liang, and J. M. Wu, Electrochem. Solid State Lett. 11, F55 (2005).
31. Y. H. Lee, J. M. Wu, Y. L. Chueh, and L. J. Chou, Appl. Phys. Lett. 87, 059542 (2005).
32. X. Qi, J. Dho, R. Tomov, M.G. Blamire, and J. L. MacManus-Driscoll, Appl. Phys. Lett. 86, 062903 (2005).
33. X. Qi, M. Wei, Y. Lin, Q. Jia, D. Zhi, J. Dho, M.G. Blamire, and J. L. MacManus-Driscoll, Appl. Phys. Lett. 86, 071913 (2005).
34. T. Fujii, S. Jinzenji, Y. Asahara, A. Kajima, and T. Shinjo, J. Appl. Phys. 64, 5434 (1988).
35. A. Kajima, T. Kaneda, H. Ito, T. Fujii, I. Okamoto, J. Appl. Phys. 70, 3760 (1991).
36. B. U. M. Rao, G. Srinicasan, J. Appl. Phys. 70, 6317 (1991).
37. M. M. Kumar, S. Srinath, G. S. Kumar, and S. V. Suryanarayana, J. Magn. Magn. Mater. 188, 203 (1998).
38. M. M. Kumar, A. Srinivas, G. S. Kumar, and S. V. Suryanarayana, J. Phys.: Condens. Matter. 11, 8131 (1999).
39. K. Ueda, H. Tabata, and T. Kawai, Appl. Phys. Lett. 75, 555 (1999)
40. T. Kanai, S. I. Ohkoshi, A. Nakajima, T. Watanabe, and K. Hashimoto, Adv. Mater. 13, 487 (2001).
41. M. M. Kumar, A. Srinivas, and S. V. Suryanarayana, J. Appl. Phys. 87, 855 (2000).
42. T. Kanai, S. I. Ohkoshi, and K. Hashimoto, J. Phys. Chem. Solids 64, 391 (2003).
43. Y. P. Wang, L. Zhou, M. F. Zhang, X. Y. Chen, J. M. Liu, and Z. G. Liu, Appl. Phys. Lett. 84, 1731 (2004).
44. D. Lee, M. G. Kim, S. Ryu, H. M. Jang, S. G. Lee, Appl. Phys. Lett. 86, 222903 (2005).
45. W. Eerenstein, F. D. Morrison, J. Dho, M. G. Blamire, J. F. Scott, and N. D. Mathur, Science 307, 1203a (2005).
46. C. Ederer, N. A. Spaldin, Phys. Rev. B 71, 060401 (2005)
47. C. Ederer, N. A. Spaldin, Phys. Rev. B 71, 224103 (2005)
48. I. Sosnowska, T. Peterlin-Neumaier and E. Steichele, J. Phys. C: solid State Phys., 15, 4835 (1982)
49. I. Sosnowska, M. Loewenhaupt, W. I. F. Davie and R. M. Ibberson, Physica B, 180&181, 117 (1992)
50. I. Sosnowska, W. Schafer, W. Kockelmann, K. H. Andersen, and I. O. Troyanchuk, Appl. Phys. A: Mater. Sci. Process. 74, S1040 (2002).
51. A. V. Zalesskii, A. A. Frolov, T. A. khimich, and A. A. Bush, Phys. Solid State 45, 141 (2003).
52. A. A. Gippius, D. F. Khozeev, E. N. Morozova, and A. V. Zalessky, phys. Stat. sol. (a) 196, 221, (2003)
53. B. Jaffe, W. R. Cook, and H. Jaffe, Piezoelectric ceramics, Academic Press, New York, 1971, P.50.
54. J. F. Nye, Physical Properties of Crystals, Clarendon Press, Oxford, (1990).
55. R.E. Newnham, Structure-Property Reactions, Springer Verlag, New York, (1975)
56. B. Ruette, MS thesis, Virginia Tech (2003).
57. M. E. Lines and A. M. Glass, Principles and Applications of Ferroelectric and Related Materials, Clarendon Press, Oxford (1997).
58. Laureen H. Parker and A. F. Tasch, “Ferroelectric materials For 64Mb and 256Mb DRAMs,” IEEE CIRCUIT DEVICES, p.17-26, January 1990
59. J. C. Burfoot and G. W. Taylor, Polar Dielectrics and Their Applications, Berkley: Univ. of Calif. Press, (1979).
60. J. M. Herbert, Ceramic Dielectrics and Capacitors, New York: Gordon and Breach, (1985).
61. J. T. Evans and R. Womack, “A Experimental 512-bit Nonvolatile Memory with Ferroelectric Storage Cell,“ IEEE J. Solid State. Circuits, 23, 1171 (1988)
62. G.. A. Somolenskii, V. A. Isupov, and A. I. Agranovskaya, Soviet Phys. Solid State, 1, 149, (1959)
63. E. C. Subbarao, “The System Sodium Fluoride-Alumina Investigated by Quenching Methods,” J. Am. Cream. Soc. 45, 166 (1962)
64. Kazuchi Amanuma, Takashi Hase, and Yoichi Miyasaka, “ Preparation and ferroelectric properties of the SrBi2Ta2O9 thin films,” Appl. Phys. Lett., 66, 221 (1995)
65. Yasuhiro Shinada et al., “Retention Characteristics of a ferroelectric memory based on SrBi2Ta2O9,” Jpn. J. Appl. Phys., 36, 5912, (1997)
66. H. N. Al-Shareef et al., “Voltage offsets and imprint mechanism in SrBi2Ta2O9 thin films,” J. Appl. Phys., 80, 4573, (1996)
67. W. L. Warren et al., “Driving force behind voltage shifts in ferroelectric materials,” Appl. Phys. Lett., 68, 1681, (1996)
68. J. B. Goodenough. Magnetism and the chemical bond. Interscience Publishers, New York, 1963.
69. W. H. Meiklejohn, C. P. Bean, Phys. Rev. 102, 1413 (1956)
70. W. H. Meiklejohn, C. P. Bean, Phys. Rev. 105, 904 (1957).
71. R. E. Cohen, Nature, 358, 136. (1992).
72. Y. Kuroiwa, Phys. Rev. Lett., 87, 217601, (2001)
73. A. Filippetti, and N. A. Hill, Phys. Rev. B 65, 195120 (2002)
74. J. V. D. Boomgaard, A. M. J. G. Van Run, and J. Van Suchtelen, Ferroelectrics 14, 727 (1976).
75. J. V. D. Boomgaard, A. M. J. G. Van Run, and J. Van Suchtelen, Ferroelectrics 10, 295 (1976).
76. J. Van Suchtelen, Philips Res. Rep. 27, 28 (1972).
77. C. W. Nan, L. Liu, N. Cai, J. Zhai, Y. Ye, and Y. H. Lin, Appl. Phys. Lett., 81, 3831, (2002)
78. G. Srinivasan, E. T. Rasmussen, and R. Hayes, Phys. Rev. B 67, 014418 (2003)
79. C. W. Nan, N. Cai, L. Liu, J. Zhai, Y. Ye, and Y. Lin, J. Appl. Phys., 94, 5930, (2003).
80. N. Cai, J. Zhai, C. W. Nan, Y. Lin, and Z. Shi, Phys. Rev. B 68, 224103 (2003)
81. P. Murugavel, D. Saurel, W. Prellier, Ch. Simon, and B. Raveau, Appl. Phys. Lett., 85, 4424, (2004)
82. B. T. Cong, N. N. Dinh, D. V. Hien, N. L. Tuyen, Physica B 327, 370, (2003).
83. H. Zheng et al., Science 303, 661, (2004)
84. K. S. Chang et al., Appl. Phys. Lett., 84, 3091, (2004)
85. A.M.J.G. van Run, D.R. Terrell, and J.H. Scholing, J. Mater. Sci. 9, 1710, (1974)
86. G. Harshe, J.P. Dougherty, and R.E. Newnham, Int. J. Appl. Electromagn. Mater. 4, 145, (1993)
87. D. N. Astrov et al., Sov. Phys. SETP 13, 729, (1961)
88. B. Ruette, S. Zvyagin, A. P. Pyatakov, A. Bush, J. F. Li, V. I. Belotelov, A. K. Zvezdin, and D. Viehland, Phys. Rev. B 69, 064114 (2004)
89. M. I. Morozov, N. A. Lomanova, and V. V. Gusarov, Russ. J. Gen. Chem. 73, 1772, (2003)
90. A. K. Pradhan et al., J. Appl. Lett. 97, 093903, (2005)
91. J. S. Kim, C. H. Yang, S. G.. Yoon, W. Y. Choi, and H. G. Kim, Appl. Surf. Science 140, 150 (1999)
92. K. Asami, T. Osaka, T. Tamanobe, I. Koiwa, Surf. Interface Anal., 30, 391 (2000)
93. Y. H. Lee and J. M. Wu, J. Crystal Growth 263, 436, (2004)

94. J. F. Moulder, W. F. Stickle, P. E. Sobol, K. D. Bomben, J. Chastain (Eds.), Handbook of X-ray photoelectron Spectroscopy, Perkin-Elmer Corporation, Minnesota, 1992.
95. M. Yashima, D. Ishimura, Chem. Phys. Lett. 378, 395, (2003)
96. B. Nagaraj, S. Aggarwal, and R. Ramesh, J. Appl. Phys. 90, 375 (2001)
97. C. C. Yang, M.S. Chen, T.J. Hong, C.M. Wu, J. M. Wu, and T.B. Wu, Appl. Phys. Lett. 66, 2643 (1995)
98. M. S. Chen, T.B. Wu, and J. M. Wu, Appl. Phys. Lett. 68, 1430 (1996)
99. A. Srivastava, D. Kumar, and R. K. Singh, Electrochem. Solid State Lett. 2, 294 (1999)
100. Y. R. Luo and J. M. Wu, Appl. Phys. Lett. 79, 3669 (2001)
101. C. S. Liang, J. M. Wu, and M. C. Chang, Appl. Phys. Lett. 81, 3624 (2002)
102. C. S. Liang, L. J. Lin, and J. M. Wu, Electrochem. Solid State Lett. 8, F29 (2005)
103. C. S. Liang, and J. M. Wu, Appl. Phys. Lett. 87, 022906 (2005)
104. S. Yokoyama, T. Ozeki, T. Oikawa, and H. Funakubo, Integr. Ferroelectr. 59, 1429 (2003)
105. S. J. Pennycook and P. D. Nellist, Impact of Electron Microscopy on Materials Research (Kluwer Academic, Dordrecht, 1999), p. 161.
106. S. J. Pennycook and D. E. Jesson, Phys. Rev. Lett. 64, 938 (1990)
107. P. D. Nellist and S. J. Pennycook, Ultramicroscopy 78, 111 (1999).
108. S. Y. Chen, and C. L. Sun, J. Appl. Phys. 90, 2970 (2001)
109. J. K. Yang, W. S. Kim, and H. H. Park, Appl. Surf. Science 169-170, 544 (2001)
110. J. K. Lee, C. H. Kim, H. S. Suh, and K. S. Hong, Appl. Phys. Lett. 80, 3593 (2002).
111. Y. Y. Yao, C. H. Song, P. Bao, D. Su, X. M. Liu, J. S. Zhu, and Y. N. Wang, J. Appl. Phys. 95, 3126 (2004).
112. Y. Zhong, G.. Hu, and T. A. Tang, Jpn. J. Appl. Phys. 42, 7424 (2003).
113. M. Alexe, and A. Gruverman, Nanoscale Characterization of Ferroelectric Materials (Springer, Berlin, 2004)
114. H. Ishiwara, M. Okuyama, and Y. Arimoto, Ferroelectric Random Access Memory: Fundamentals and Applications, (Springer, Berlin, 2004), Vol. 93.
115. A. Gruverman, O. Auciello, H. Tokumoto, Ann. Rev. Mater. Sci. 28, 101. (1998)
116. A. Gruverman, A. Kholkin, A. Kingon, H. Tokumoto, Appl. Phys. Lett. 78, 2751, (2001)
117. H.-N. Lin, S.-H. Chen, S.-T. Ho, P.-R. Chen, I.-N. Lin, J. Vac. Sci. Technol. B, 21, 916, (2003)
118. L. M. Eng, H.-J. Guentherodt, G. Rosenman, A. Skliar, M. Oron, M. Katz, and D. Eger, J. Appl. Phys. 83, 5973 (1998).
119. S. Hong, J. Woo, H. Shin, J. U. Jeon, Y. E. Pak, E. L. Colla, N. Setter, E. Kim, and K. No, J. Appl. Phys. 89, 1377 (2001).
120. A. Roelofs, U. Boettger, R. Waser, F. Schlaphof, S. Trogisch, and L. M. Eng, Appl. Phys. Lett. 77, 3444 (2000).
121. B. J. Rodriguez, A. Gruverman, A. I. Kingon, and R. J. Nemanich, J. Appl. Phys. 95, 1958 (2004).
122. S. Hong, B. Escabart, E. L. Colla, and N. Setter, Appl. Phys. Lett. 84, 2382 (2004).
123. S. V. Kalinin and D. A. Bonnell, Phys. Rev. B 65, 125408 (2002).
124. T. Tybell, P. Paruch, T. Giamarchi, and J.-M. Triscone, Phys. Rev. Lett. 89, 97601-1 (2002).
125. C. S. Ganpule, V. Nagarajan, H. Li, A. S. Ogale, D. E. Steinhaueur, S. A. Aggarwal, E. Williams, and R. Ramesh, Appl. Phys. Lett. 77, 292 (2000).
126. C. S. Ganpule, A. L. Roytburd, V. Nagarajan, B. K. Hill, S. B. Ogale, E. D. Williams, R. Ramesh, and J. F. Scott, Phys. Rev. B 65, 014101-7 (2001).
127. C. S. Ganpule, V. Nagarajan, S. P. Alpay, A. Royturd, and R. Ramesh, J. Appl. Phys. 91, 1477 (2002).
128. A. Roelofs, N. A. Pertsev, R. Waser, F. Schlaphof, L. M. Eng, C. Ganpule, V. Nagarajan, and R. Ramesh, Appl. Phys. Lett. 80, 1424 (2002).
129. D. S. Fu, K. Suzuki, K. Kato, and H. Kuzuki, Appl. Phys. Lett. 82, 2130 (2003).
130. J. A. Christman, J. R. R. Woolcott, A. I. Kingon, and R. J. Nemanich, Appl. Phys. Lett. 73, 3851-53 (1998).
131. C. S. Ganpule, A. Stanishevsky, Q. Su, S. Aggarwal, J. Melngailis, E. Williams, and R. Ramesh, Appl. Phys. Lett. 75, 409 (1999).
132. V. Nagarajan, A. Roytburd, A. Stanishevsky, S. Prasertchoung, T. Zhao, L. Chen, J. Melngailis, O. Auciello, and R. Ramesh, Nat. Mater. 2, 43 (2003).
133. V. Nagarajan, A. Stanishevsky, T. Zhao, L. Chen, J. Melngailis, A. R. Royturd, and R. Ramesh, Appl. Phys. Lett. 81, 4215 (2002).
134. C. Harnagea, M. Alexe, D. Hesse, and A. Pignolet, Appl. Phys. Lett. 83, 338 (2003).
135. E. L. Colla, I. Stolichnov, P. E. Bradley, and N. Setter, Appl. Phys. Lett. 82, 1604 (2003).
136. I. Stolichnov, E. Colla, A. Tagantsev, S. S. N. Bharadwaja, S. Hong, N. Setter, J. S. Cross, and M. Tsukada, Appl. Phys. Lett. 80, 4804 (2002).
137. T. Tybell, C. H. Ahn, and J.-M. Triscone, Appl. Phys. Lett. 75, 856 (1999).
138. T. Tybell, C. H. Ahn, and J.-M. Triscone, Appl. Phys. Lett. 72, 1454 (1998).
139. S. V. Kalinin, A. Gruverman, and D. Bonnell, Appl. Phys. Lett. 85, 795 (2004).
140. J. A. Christman, S. H. Kim, H. Miwa, J. P. Maria, B. J. Rodriguez, A. I. Kingon, and R. J. Nemanich, J. Appl. Phys. 87, 8031 (2000).
141. V. Nagarajan, S. Aggarwal, A. Gruverman, R. Ramesh, and R. Waser, Appl. Phys. Lett. 86, 262910 (2005).
142. D. Dimos, W. L. Warren, M. B. Sinclair, B. A. Tuttle, and R. W. Schwartz, J. Appl. Phys. 76, 4305 (1994).
143. W. L. Warren, D. Dimos, B. A. Tuttle, R. D. Nasby, and G. E. Pike, Appl. Phys. Lett. 65, 1018 (1994).
144. W. L. Warren, D. Dimos, G. E. Pike, B. A. Tuttle, M. V. Raymond, R. Ramesh, and J. T. E. Jr., Appl. Phys. Lett. 67, 866 (1995).
145. S. H. Kim, D. S. Lee, C. S. Hwang, D. J. Kim and A. I. Kingon, Appl. Phys. Lett. 77, 3036 (2000).
146. I. Kim, Y. Avrahami, H. L. Tuller, Y. B. Park, M. J. Dicken, and H. A. Atwater, Appl. Phys. Lett. 86, 192907 (2005).
147. B. J. Rodriguez, A. Gruverman, A. I. Kingon, R. J. Nemanich, and O. Ambacher, Appl. Phys. Lett. 80, 4166 (2002).
148. Y. H. Lee, J. M. Wu, and C. H. Lai, Appl. Phys. Lett. (submitted)
149. B.B.V. Aken, T.T.M. Palstra, A. Filiooetti, and N. A. Spaldin, nature mater. 3, 164 (2004).
150. C. Ederer, and N. A. Spaldin, nature mater. 3, 849 (2004).
151. D.V. Efremov, J.V.D. Brink, and D.I. Khomskii, nature mater. 3, 853 (2004).
152. T. Lottermoser, T. Lonkai, U. Amann, D. Hohlwein, J. Ihringer, and M. Fiebig, Nature (London) 430, 541 (2004)
153. M.K. Ok et al., Inorg. Mater. 40, 1978 (2001)
154. R.E. Cohen, and H. Krakauer, Ferroelectrics 136, 65 (1992)
155. R.E. Cohen, Nature (London) 358, 136 (1992)
156. M. Atansov, and D. Reinen, J. Phys.Chem. A 105, 5450 (5002)
157. U.V. Waghmare, and N. A. Spaldin, Phys. Rev. B 67, 125111 (2003).
158. Y. Kuroiwa et al., Phys. Rev. Lett. 87, 217601 (2001).
159. G.O. Jones, and P.A. Thomas, Acta Crystallogr. B 58, 168 (2003).
160. A. Zalesskii, A. Zvezdin, A. Frolov, and A. Bush, JETP Lett. 71, 465 (2000).
161. A. V. Zalesskii, A. A. Frolov, T. A. Khimich, A. A. Bush, V. S. Pokatilov, and A. K. Zvezdin, Europhys. Lett. 50, 547 (2000).
162. I. Sosnowska and A. Zvezdin, J. Magn. Magn. Mater. 140-144, 167 (1995).
163. Yu. F. Popov, A. Zvezdin, G. Vorob’ev, A. Kadomtseva, V. Murashev, and D. Rakov, JETP Lett. 57, 69 (1993).
164. A. Kadomtseva, Yu. Popov, G. Vorob’ev, and A. Zvezdin, Physica B 211, 327 (1995).
165. Yu. F. Popov, A. Kadomteseva, S. Krotov, D. Belov, G. Vorob’ev, P. Makhov, and A. Zvezdin, Low Temp. Phys. 27, 478 (001).
166. R. Blinc and A. P. Levanyuk, Incommensurate Phases in Dielectrics North-Holland, New York, (1986).
167. T. Lorenz, B. Buchner, P. H. M. van Loosdrecht, F. Shonfield, G. Chouteau, A. Revcolevschi, and G. Chalenne, Phys. Rev. Lett.81, 148 (1998).
168. R. Blinc, U. Micac, T. Apih, J. Dolinsek, J. Seliger, J. Slak, S. Zumer, L. Guibe, and D. Ailion, Phys. Rev. Lett. 88, 015701 (2002).
169. B. Topic, U. Haeberlen, and R. Blinc, Phys. Rev. B 42, 7790 (1990).
170. R. Blinc, P. Prelovsek, and R. Kind, Phys. Rev. B 27, 5404 (1983).
171. T. Aphih, U. Mikac, J. Dolinsek, J. Seliger, and R. Blinc, Phys. Rev. B 61, 1003 (2000).
172. T. Aphih, U. Mikac, J. Seliger, J. Dolinsek, and R. Blinc, Phys. Rev. Lett. 80, 2225 (1998).
173. C.Y. Yau, R. Palan, K. Tran, and R.C. Buchanan, Appl. Phys. Lett. 86, 032907 (2005).
174. Y. Ding, J.S. Liu, H.X. Qin, J.S. Zhu, and Y.N. Wang, Appl. Phys. Lett. 78, 4175 (2001).
175. M.S. Tomar, R.R. Melgarejo, A. Hidalgo, S.B. Mazumder, and R.S. Katiyar, Appl. Phys. Lett. 83, 341 (2003).
176. Z.G. Zhang, D.P. Chu, B.M. Mcgregor, P. Migliorato, K. Ohashi, K. Hasegawa, and T. Shimoda, Appl. Phys. Lett. 83, 2892 (2003).
177. E. Traversa, S. Matsushuma, G. Okada, Y. Sadaoka, Y. Sakai, K. Watanabe, Sens. Actuator B-Chem. 24-25, 661 (1995).
178. N.N. Toan, S. Saukko, V. Lantto, Phys. B 327, 279 (2003).
179. D. Kuscer, M. Hrovat, J. Holc, S. Bernik, D. Kolar, J. Pow. Souc. 61, 161 (1996).
180. R. Dogra, A.C. Junqueira, R.N. Saxena, A.W. Carbonari, J.M. Filho, M. Moralles, Phys. Rev. B 63, 224104 (2001).
181. A. Scholl, J. Stohr, J. Luning, J.W. Seo, J. Fompeyrine, H. Siegwart, J.P. Locquet, F. Nolting, S. Anders, E.E. Fullerton, M.R. Scheinfein, H.A. Padmore, Science 287, 1014 (2000).
182. J. Nogues, I. K. Schuller, J. Magn. Magn.Mater. 192, 229 (1999).
183. Y. Yamada, T. Kusumori, H. Muto, Appl. Phys. Lett. 80, 1409 (2002).
184. D.S. Deng, X.F. Jin, Phys. Rev. B. 65, 172402 (2002).
185. Q. X. Guo, A. Okada, H. Kidera, T. Tanaka, M. Nishio, H. Ogawa, J. Crystal Growth 237-239, 1079 (2002).
186. S. Zhu, C. H. Su, S.L. Lehoczky, P. Peters, M.A. George, J. Crystal Growth 211, 106 (2000).
187. X. Wang, S. Olafsson, P. Sandstrom, U. Helmersson, Thin Solid Films 360, 181 (2000).
188. N. Wakiya, T. Azuma, K. Shinozaki, N. Mizutani, Thin Solid Films 410, 114 (2002).
189. X. Guo, Z. Chen, D. Cui, Y. Zhou, H.Z. Huang, H.X. Zhang, F. Liu, K. Ibrahim, H. Qian, J. Crystal Growth 219, 404 (2000).
190. A.J. Signorelli, R.G. Hayes, Phys. Rev. B. 8, 81 (1973).
191. D.F. Mullica, C.K.C. Lok, H.O. Perkins, Phys. Rev. B. 31, 4039 (1985).
192. S.J. Oh, G.H. Kim, G.A. Sawatzky, HT. Jonkman, Phys. Rev. B. 37, 6145 (1988).
193. R. A. Rao, Q. Gan, C. B. Eom, Mat. Res. Soc. Symp. Proc. 474, 327 (1997).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 56.黃天福、梁昇,「應用穿地雷達技術偵測地中埋設管線」,中華水土保持學報,第24卷,第2期,第15-21頁 (1993)。
2. 48.倪勝火、陳敬寬、林宏明,「透地雷達法於檢測土木結構物淘空之應用」,土木技術,第34期,第82-95頁 (2000)。
3. 47.倪勝火、林宏明、陳敬寬,「透地雷達應用於堤身中空檢測之研究」,檢測科技,第18卷,第3期,第84-92頁 (2000)。
4. 12.李錫堤、黃慈銘、廖啟雯、陳宏仁,「地下地質資料庫系統的建置與應用-以台北盆地為例」,地工技術,第89期,第13-26頁 (2002)。
5. 9.李焜發、宣大衡、巫國華,「透地雷達解析技術,探採研究彙報」,第22期,第319-340頁 (1999)。
6. 62.梁昇,「穿地雷達回波的原理及其應用於地下水水位之偵測」,農林學報,第39卷,第2期,第201-219頁 (1990)。
7. 66.楊潔豪、廖國彰,「透地雷達探測與應用」,地質,第14卷,第2期,第115 -118頁 (1994)。
8. 71.楊潔豪、王仲宇、葛其民,「透地雷達在柔性舖面檢測上之應用」,檢測科技,第18卷,第3-4期,第44-53頁 (2000a)。
9. 72.楊潔豪、王仲宇、陳兆年、王思堯、葛其民,「透地雷達在混凝土結構體檢測上之應用」,土木技術,第34卷,第72-81頁 (2000b)。
10. 74.楊潔豪,「透地雷達法在土木檢測上的應用」,地工技術,第86期,第51-62頁 (2001)。