跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2025/02/13 04:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:方偉權
研究生(外文):Wei-Chuan Fang
論文名稱:以奈米碳管為基底複合材料在微型超高電容器之應用
論文名稱(外文):Carbon nanotube based nanocomposites for miniaturized supercapacitor applications
指導教授:黃金花黃金花引用關係林麗瓊林麗瓊引用關係陳貴賢陳貴賢引用關係
指導教授(外文):Jin-Hua HuangLi-Chyong LinKuei-Hsien Chen
學位類別:博士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:164
中文關鍵詞:奈米碳管奈米複合材料微型超高電容器微波電漿化學氣相沈積射頻濺鍍直接合成法
外文關鍵詞:Carbon nanotubesNanocompositesMiniaturized supercapacitorsMPECVDRF sputteringDirect -ynthesis method
相關次數:
  • 被引用被引用:0
  • 點閱點閱:389
  • 評分評分:
  • 下載下載:67
  • 收藏至我的研究室書目清單書目收藏:1
在本研究中,我們使用濺鍍法來製備均勻分散的氧化釕奈米粒子,使其與直接成長在矽基板上的奈米碳管形成氧化釕-奈米碳管複合材料。結果顯示,不需要任何濕式化學前處理或是有機金屬前驅物,氧化釕奈米粒子可大面積地附著在奈米碳管側壁上。循環伏安測試結果顯示,此複合材料在掃瞄速率為600 mV/s下之比電容值,以氧化釕重量為基準可高至1380 F/g 。更重要的是,此複合材料在非常高掃瞄速率下仍展現出理想的電容行為,同時,最高速率可在600 mV/s掃瞄速率下進行長達5000圈的充放電測試,且充放電電流密度可達23 mA/cm2。
此外,本研究也對氮原子摻雜在改善氧化釕-奈米碳管複合材料的電容特性之效應上加以探討。結果顯示,含有氮原子之碳管其電容特性有顯著的提升,其可能的機制為添加氮原子於碳管結構中會產生許多成核區域於碳管的側壁上,如此一來,氧化釕奈米粒子有更多機會分散於碳管的表面。以此含氮碳管與氧化釕所形成的奈米複合材料電極,其掃瞄速率可高達2000 mV/s,顯示氮原子摻雜對於該奈米複合材料的快速充放電之電容特性扮演著極為重要的一個角色。因此,本研究所報導的奈米複合材料陣列對於日後在具有優異電容特性之微型系統上提供了另一種可能性。
In this dissertation work, we report a simple and efficient route to prepare nanocomposites with well-dispersed ruthenium oxide nanoparticles (NPs) on a vertically aligned nitrogen-containing carbon nanotube (CNx NT) array directly grown on Si substrates. It is found that uniform ruthenium oxide NPs can be formed around the sidewalls of CNx NTs over a large area with simple sputtering method, without using any wet chemical pretreatments or metal organic precursors. Cyclic voltammetry (CV) measurement suggests a superior specific capacitance of 1380 F/g (RuO2-based mass) at 600 mV/s. More importantly, this RuO2-CNTs composite exhibits an ideal capacitive behavior at an extremely high scan rate of up to 600 mV/s for 5000 cycles, and the charging-discharging capacity can be as high as 23 mA/cm2.
Besides, effects of nitrogen doping on the enhancement in capacitive performance of RuO2 coated carbon nanotubes are also investigated. A significant increase in the measured capacitance has been obtained for the nitrogen-doped sample. The function of nitrogen doping is to create more nucleation sites on the sidewalls of CNTs for RuO2 NPs attachment. So far, an optimal scan rate of 2000 mV/s has been obtained. Definitely, nitrogen incorporation indeed plays an important role in the ultra fast charging-discharging capacitive behaviors of RuO2-coated carbon nanotubes. Therefore, the reported RuO2-CNxNT nanocomposites are suitable for miniaturized energy storage devices with superior capacitive performances.
Abstract (Chinese)……………………………………………………i
Abstract (English) …………………………………………………ii
Acknowledgement………………………………………………………iii
Table of contents ……………………………………………………iv
List of Figures………………………………………………………iii
List of Tables………………………………………………………xiv
Chapter 1 Introduction………………………………………………1
1.1 Introduction………………………………………………………1
1.2 Dissertation organization………………………………………3
Chapter 2 Technical Background……………………………………4
2.1 Overview of electrochemical capacitors……………………4
2.1.1 Theory of supercapacitors…………………………………4
2.1.2 Double-layer capacitance and charging current in electrochemical (EC) measurements…………………………………7
2.1.3 Effect of double-layer capacitance and uncompensated resistance………………………………………………………………9
2.1.4 Differences between a supercapacitor and a battery…………………………………………………………………10
2.2 Literature review………………………………………………12
2.2.1 Electrode materials…………………………………………12
2.2.2 Electrolytes…………………………………………………16
2.2.3 Equivalent series resistance……………………………17
2.3 Microelectrochemical system…………………………………18
2.3.1 Origin …………………………………………………………18
2.3.2 Microsupercapacitors ………………………………………19
Chapter 3 Experimental section……………………………………32
3.1 Experimental procedure…………………………………………32
3.2 Materials preparation…………………………………………32
3.2.1 Substrate cleaning…………………………………………32
3.2.2 Preparation of the iron catalysts……………………33 3.2.3 Growth of carbon nanotubes………………………………33
3.2.4 Sputtering of ruthenium oxide nanoparticles…………33
3.3 Structural analyses……………………………………………33
3.3.1 Raman spectrum………………………………………………33
3.3.2 X-ray diffraction …………………………………………34
3.3.3 X-ray photon spectroscopy…………………………………34
3.3.4 Scanning electron microscopy……………………………34
3.3.5 Transmission electron microscopy………………………35
3.3.6 Inductively coupled plasma-optical emission spectroscopy……………………………………………………………35
3.4 Electrical measurements………………………………………35
3.4.1 Four-point probe method……………………………………35
3.5 Electrochemical measurements…………………………………36
3.5.1 Cyclic voltammograms………………………………………36
3.5.2 Charging-discharging………………………………………36
3.5.3 Electrochemical impedance spectroscopy………………36
Chapter 4 Fundamental EC properties of CNx NTs grown on Ti foil and RuO2…………………………………………………………43
4.1 Factors to EC properties of CNx NTs………………………43
4.1.1 Experimental procedures……………………………………43
4.1.2 Results and discussion……………………………………45
4.1.3 Conclusions……………………………………………………47
4.2 Enhancement of EC performances of CNx NTs grown on Ti foils by nitric acid treatment…………………………………47
4.2.1 Experimental procedures……………………………………48
4.2.2 Results and discussion……………………………………49
4.2.3 Conclusions……………………………………………………52
4.3 Effect of annealing treatment on structures and capacitive properties off hydrous RuO2 prepared by electroplating…………………………………………………………53
4.3.1 Experimental procedures……………………………………54
4.3.2 Results and discussion……………………………………54
4.3.3 Conclusions……………………………………………………56
Chapter 5 Fabrication of EC Si-based platforms………………71
5.1 Fabrication of EC platform on Si substrate using Ti buffer layer……………………………………………………………71
5.1.1 Experimental procedures……………………………………72
5.1.2 Results and discussion……………………………………73
5.1.3 Conclusions……………………………………………………76
5.2 Superior EC performance of CNx NTs grown on Si substrate………………………………………………………………76
5.2.1 Experimental procedures……………………………………77
5.2.2 Results and discussion……………………………………78
5.2.3 Conclusions……………………………………………………81
5.3 Influence of catalyst oxidation on the growth of CNx NTs………………………………………………………………………82
5.3.1 Experimental procedures……………………………………82
5.3.2 Results and discussion……………………………………83
5.3.3 Conclusions……………………………………………………85
5.4 Concentration effect of K3[Fe(CN)6] on the EC activities of CNx NTs………………………………………………85
5.4.1 Experimental procedures……………………………………87
5.4.2 Results and discussion……………………………………87
5.4.3 Conclusions……………………………………………………89
Chapter 6 Synthesis and characterization of nanocomposites of CNx NTs-RuO2………………………………………………………110
6.1 Arrayed CNx NT-RuO2 nanocomposites directly grown on Ti-buffered Si substrates for supercapacitor applications …………………………………………………………………………110
6.1.1 Experimental procedures…………………………………111
6.1.2 Results and discussion……………………………………112
6.1.3 Conclusions…………………………………………………116
6.2 The constructed model for nanocomposites of CNx NT-RuO2 grown on Ti-buffered Si substrate using direct method…116
6.2.1 Experimental procedures…………………………………117
6.2.2 Results and discussion……………………………………117
6.2.3 Conclusions…………………………………………………120
6.3 Effect of nitrogen doping on capacitive properties of supercapacitors………………………………………………………120
6.3.1 Experimental procedures…………………………………121
6.3.2 Results and discussion……………………………………122
6.3.3 Conclusions…………………………………………………124
6.4 RuO2 phase transformation induced by EC oxidation approach………………………………………………………………124
6.4.1 Experimental procedures…………………………………126
6.4.2 Results and discussion……………………………………127
6.4.3 Conclusions…………………………………………………128
Chapter 7 Conclusions and Recommendations……………………148
7.1 Conclusions………………………………………………………148
7.2 Recommendations…………………………………………………149
References……………………………………………………………150
List of Publications ...................................164
1. B. E. Conway, Electrochemical Supercapacitors-
Scientific Fundamentals and Technological Applications,
Kluwer Academic/Plenum, New York, 1999.
2. K. Kinoshita, Electrochemical and Physicochemical
Properties, John & Sons, New York, 1988.
3. T. C. Liu, W. G. Pell and B. E. Conway, Electrochim.
Acta, 42, 3541 (1997).
4. H. Y. Lee and J. B. Goodenough, J. Solid State Chem.,
144, 220 (1999).
5. H. Y. Lee and J. B. Goodenough, J. Solid State Chem.,
148, 81 (1999).
6. T. C. Liu, W. G. Pell and B. E. Conway, J. Electrochem.
Soc., 145, 1882 (1998).
7. V. Barsukov and S. Chivikov, Electrochim. Acta, 41, 1773
(1996).
8. S. Yata, E. Okamoto, H. Satake, H. Kubota, M. Fujji, T.
Taguchi and H. Kinoshita, J. Power Sources, 60, 207
(1999).
9. A. Laforgue, P. Simon, C. Sarrazin and J. F. Fauvarque,
J. Power Sources, 80, 142 (1999).
10. J. P. Ferraris, M. M. Eissa, I. D. Broherston and D. C.
Loveday, Chem. Mater., 10, 3528 (1998).
11. J. C. Carlberg and O. Inganas, J. Electrochem. Soc.,
144, L61 (1997).
12. T. Kanbara, K. Nishimura, T. Yamamoto and Tokuda, J.
Power Sources, 32, 165 (1990).
13. C. Z. Deng, R. A. Pynenburg and K. C. Tsai, J.
Electrochem. Soc., 145, L61 (1998).
14. H. B. Gu, J. U. Kim, H. W. Song, G. C. Park and B. K.
Park, Electrochim. Acta, 45, 1533 (2000).
15. J. M. Miller, B. Dunn, T. D. Tran and R. W. Pekala, J.
Electrochem. Soc., 144, L309 (1997).
16. H. Shi, Electrochim. Acta, 41, 1633 (1996).
17. J. P. Zheng, P. J. Cygan and T. R. Jow, J. Electrochem.
Soc., 142, 2699 (1995).
18. T. R. Jow and J. P. Zhang, J. Electrochem. Soc., 145,
49 (1998).
19. C. Lin, J. A. Ritter and B. N. Popov, J. Electrochem.
Soc., 146, 3155 (1999).
20. J. P. Zheng, Electrochem. Solid-State Lett., 2, 359
(1999).
21. K. Hiratsuka, Y. Sanada, T. Muranaka and K. Kurihara,
Denki Kagaku, 59, 209 (1980).
22. K. Hiratsuka, Y. Sanada, T. Muranaka and K. Kurihara,
Denki Kagaku, 59, 607 (1991).
23. M. Morita, M. Goto and Y. Matsuda, J. Appl.
Electrochem., 22, 901 (1992).
24. Y. Sanada, K. Hiratsuka, T. Morimoto and K. Kurihama,
Denki Kagaku, 61, 448 (1993).
25. T. Morimoto, K. Hiratsuka, Y. Sanada, K. Kurihama and
Y. Kimura, Denki Kagaku, 63, 587 (1995).
26. T. Morimoto, K. Hiratsuka, Y. Sanada, K. Kurihama and
Y. Kimura, J. Power Sources, 60, 239 (1996).
27. M. Ue, M. Takahara and M. Takeda, Denki Kagaku, 65, 969
(1997).
28. A. B. Mcewen, H. L. Ngo, K. Lecompte and J. L. Goldman,
J. Electrochem. Soc., 146, 1687 (1999).
29. T. Kanbara, M. Inami and T. Yamamoto, J. Power Sources,
36, 87 (1991).
30. M. Ishikawa, M. Morita, M. Ihara and Y. Matsuda, J.
Electrochem. Soc., 141, 1730 (1994).
31. J. M. Pernaut and G. Goulart, J. Power Sources, 55, 93
(1995).
32 X. Liu and T. Osaka, J. Electrochem. Soc., 143, 3982
(1996).
33. M. Ishikawa, M. Morita, M. Ihara and Y. Matsuda, Denki
Kagaku, 62, 722 (1994).
34. X. Liu and T. Osaka, J. Electrochem. Soc., 144, 3066
(1997).
35. A. Matsuda, H. Honjo, M. Tatsumisago and T. Minami,
Chem. Lett. 11, 1189 (1998).
36. T. Osaka, X. Liu and M. Nojima, J. Power Sources, 74,
122 (1998).
37. A. Matsuda, H. Honjo, M. Tstsumisago and T. Minami, J.
Power Sources, 77, 12 (1999).
38. T. Osaka, X. Liu, M. Nojima and T. Momma, J.
Electrochem. Soc., 146, 1724 (1999).
39. N. Kubota, H. Watanabe, G. Konaka and Y. Eguchi, J.
Appl. Polym. Sci., 76, 12 (2000).
40. Mikrosystemtechnik 2000+, Bundesministerium fur
Bildung und Forschung (BMBF), Bonn, 2000.
41. W. Ehrfeld, U. Ehrfeld and S. Kiesewalter, Progress and
Profit through Micro Technologies (MICRO.tec), 2000,
vol. 1, VDEVerlag, Berlin, 2000, p. 9.
42. Market analysis for micro systems II, 2000-2005, A
NEXUS Task Force Report, February 2002.
43. K. Kanehori, K. Matsumoto, K. Miyauchi and T. Kudo,
Solid State Ionics, 9/10, 1445 (1983).
44. J. H. Lim, D. J. Choi, H. K. Kim, W. I. Cho and Y. S.
Soon, J Electrochem. Soc., 148, A275 (2001).
45. H. S. Kim and B. N. Popov, J Electrochem. Soc., 150,
A1153 (2003).
46. J. M. Nugent, K. S. Santhanam, A. Rubio and P. M.
Ajayan, Nano Letter, 1, 87 (2001).
47. S. Frank, P. Poncharal, Z. L. Wang and W. A. de Heer,
Science, 280, 1744 (1998).
48. Y. H. Lee, K. H. An, J. Y. Lee and S. C. Lim, “Carbon
Nanotube-Based Supercapacitors” in Encyclopedia of
Nanoscience and Nanotechnology, edited by H. S.
Nalwa (American Scientific, New York, 2004).
49. L. Diederich, E. Barborini, P. Piseri, A. Podesta, P.
Milani, A. Schneuwly and R. Gallay, Appl. Phys. Lett.,
75, 2662 (1999).
50. C. Y. Liu, A. J. Bard, F. Wudl, I. Weitz and J. R.
Heath, Electrochem. Solid-State Lett., 2, 577 (1999).
51. L. Bonnefoi, P. Simon, J. F. Fauvarque, C. Sarrazin,
J. F. Sarrau and A. Dugast, J.Power Sources, 80, 149
(1999).
52. E. Frackowiak, K. Metenier, V. Bertagna and F. Beguin,
Appl. Phys. Lett., 77, 2421 (2000).
53. E. Frackowiak, K. Jurewicz, S. Delpeux and F. Beguin,
J. Power Sources, 97, 822 (2001).
54. K. H. An, W. S. Kim, Y. S. Park, Y. C. Choi, S. M. Lee,
D. C. Chung, D. J. Bae, S. C. Lim and Y. H. Lee, Adv.
Mater., 13, 497 (2001).
55. T. C. Weng and H. S. Teng, J. Electrochem. Soc., 148,
A368 (2001).
56. H. S. Teng, Y. J. Chang and C. T. Hsieh, Carbon, 39,
1981 (2001).
57. K. H. An, W. S. Kim, Y. S. Park, J. M. Moon, D. J. Bae,
S. C. Lim, Y. S. Lee and Y. H. Lee, Adv. Fun. Mater.,
11, 387 (2001).
58. J. Gamby, P. L. Taberna, P. Simon, J. F. Fauvarque and
M. Chesneau, J. Power Sources, 101, 109 (2001).
59. H. Yang, M. Yoshio, K. Isono and R. Kuramoto,
Electrochem. Solid-State Lett., 5, A141 (2002).
60. P. V. Adhyapak, T. Maddanimath, S. Pethkar, A. J.
Chandwadkar, Y. S. Negi and K. Vijayamohanan, J. Power
Sources, 109, 105 (2002).
61. E. Frackowiak, S. Delpeux, K. Jurewicz, K. Szostak, D.
Cazorla-Amoros and F. Beguin, Chem. Phys. Lett., 361,
35 (2002).
62. H. S. Zhou, S.M. Zhu, M. Hibino and I. Honma, J. Power
Sources, 122, 219 (2003).
63. C. Kim, J. S. Kim, S. J. Kim, W. J. Lee and K. S. Yang,
J. Electrochem. Soc., 151, A769 (2004).
64. F. Pico, J. M. Rojo, M. L. Sanjuan, A. Anson, A. M.
Benito, M. A. Callejas, W. K. Maser and M. T. Martinez,
J. Electrochem. Soc., 151, A831 (2004).
65. Q. L. Chen, K. H. Xue, W. Shen, F. F. Tao, S. Y. Yin
and W. Xu, Electrochim. Acta, 49, 4157 (2004).
66. C. Portet, P. L. Taberna, P. Simon and E. Flahaut, J.
Power Sources, 139, 371 (2005).
67. H. S. Ye, X. Liu, H. F. Cui, W. D. Zhang, F. S. Sheu
and T. M. Lim, Eelectrochem. Commun., 7, 249 (2005).
68. I. H. Kim and K. B. Kim, Electrochem. Solid-State
Lett., 4, A62 (2001).
69. J. H. Park and O. O. Park, J. Power Sources, 109, 121
(2002).
70. C. C. Hu, W. C. Chen and K. H. Chang, J. Electrochem.
Soc., 151, 281 (2004).
71. K. H. Chang and C. C. Hu, J. Electrochem. Soc., 151,
A958 (2004).
72. B. O. Park, C. D. Lokhande, H. S. Park, K. D. Jung and
O. S. Joo, J. Power Sources, 134, 148 (2004).
73. C. C. Hu and C. Y. Cheng, Electrochem. Solid-State
Lett., 5, A43 (2002).
74. C. C. Hu and T. W. Tsou, Electrochem. Commun., 4, 105
(2002).
75. C. C. Hu and T. W. Tsou, J. Power Sources, 115, 179
(2003).
76. H. Kim and B.N. Popov, J. Electrochem. Soc., 150, D56
(2003).
77. A. A. F. Grupioni, E. Arashiro and T. A. F. Lassali,
Electrochim. Acta, 48, 407 (2002).
78. R. N. Reddy and R. G. Reddy, J. Power Sources, 132, 315
(2004).
79. K. R. Prasad, K. Koga and N. Miura, Chem. Mater., 16,
1845 (2004).
80. M. Toupin, T. Brousse and D. Belanger, Chem. Mater.,
16, 3184 (2004).
81. K. R. Prasad and N. Miura, Electrochem. Commun., 6, 849
(2004).
82. X. Y. Wang, W. G. Huang, P. J. Sebastian and S. Gamboa,
J. Power Sources, 140, 211 (2005).
83. K. R. Prasad and N. Miura, Appl. Phys. Lett., 85, 4199
(2004).
84. Y. Y. Liang, L. Cao, L. B. Kong and H. L. Li, J. Power
Sources, 136, 197 (2004).
85. C. Arbizzani, M. C. Gallazzi, M. Mastragostino, M.
Rossi and F. Soavi, Electrochem. Commun., 3, 16 (2001).
86. M. Mastragostino, R. Paraventi and A. Zanelli, J.
Electrochem. Soc., 147, 3167 (2000).
87. K. S. Ryu, K. M. Kim, N. G. Park, Y. J. Park and S. H.
Chang, J. Power Sources, 103, 305 (2002).
88. P. Soudan, H. A. Ho, L. Breau and D. Belanger, J.
Electrochem. Soc.,148, A775 (2001).
89. M. Mastragostino, C. Arbizzani and F. Soavi, J. Power
Sources, 97, 812 (2001).
90. C. C. Hu and J. Y. Lin, Electrochim. Acta, 47, 4055
(2002).
91. M. Mastragostino, C. Arbizzani and F. Soavi, Solid
State Ionics, 148, 493 (2002).
92. H. Talbi, P. E. Just and L. H. Dao, J. Appl.
Electrochem., 33, 465 (2003).
93. A. M. White and R. C. T. Slade, Electrochim. Acta, 49,
861 (2004).
94. P. Sivaraman, V. R. Hande, V. S. Mishra, C. S. Rao and
A. B. Samui, J. Power Sources, 124, 351 (2003).
95. K. S. Ryu, Y. G. Lee, Y. S Hong., Y. J. Park, X. L. Wu,
K. M. Kim, M. G. Kang, N. G. Park and S. H. Chang,
Electrochim. Acta, 50, 843 (2004).
96. C. C. Wang and C. C. Hu, J. Electrochem. Soc., 152,
A370 (2005).
97. M. S. Dandekar, G. Arabale and K. Vijayamohanan, J.
Power Sources, 141, 198 (2005).
98. E. Raymundo-Pinero, V. Khomenko, E. Frackowiak and F.
Beguin, J. Electrochem. Soc., 152, A229 (2005).
99. Y. T. Wu and C. C. Hu, J. Electrochem. Soc., 151, A2060
(2004).
100. H. C. Liang, F. Chen, R. G. Li, L. Wang and Z. H.
Deng, Electrochim. Acta, 49, 3463 (2004).
101. C. C. Hu and W. C. Chen, Electrochim. Acta, 49, 3469
(2004).
102. Y. G. Wang and X. G. Zhang, Electrochim. Acta, 49,
1957 (2004).
103. W. C. Chen, C. C. Hu, C. C. Wang and C. K. Min, J.
Power Sources, 125, 292 (2004).
104. C. C. Wang and C. C. Hu, Mater. Chem. Phys., 83, 289
(2004).
105. C. C. Hu and C. C. Wang, Electrochem. Commun., 4, 554
(2002).
106. M. Rarnani, B. S. Haran and R. E. White, J.
Electrochem. Soc., 148, A374 (2001).
107. C. C. Hu, W. Y. Li and J. Y. Lin, J. Power Sources,
137, 152 (2004).
108. Y. K. Zhou, B. L. He, W. J. Zhou, J. Huang, X. H. Li,
B. Wu and H. I. Li, Electrochim. Acta, 49, 257 (2004).
109. T. Liu, T. V. Sreekumar, S. Kumar, R. H. Hauge and R.
E. Smalley, Carbon, 41, 2440 (2003).
110. J. H. Park and O. O. Park, J. Power Sources, 111, 185
(2002).
111. K. H. An, K. K. Jeon, J. K. Heo, S. C. Lim, D. J. Bae
and Y. H. Lee, J. Electrochem. Soc., 149, A1058
(2002).
112. K. Jurewicz, S. Delpeux, V. Bertagna, F. Beguin and E.
Frackowiak, Chem. Phys. Lett., 347, 36 (2001).
113. M. Hughes, G. Z. Chen, M. S. P. Shaffer, D. J. Fray
and A. H. Windle, Chem. Mater., 14, 1610 (2002).
114. X. Qin, S. Durbach and G. T. Wu, Carbon, 42, 451
(2004).
115. J. H. Park, J. M. Ko and O. O. Park, J. Electrochem.
Soc., 150, A864 (2003).
116. G. Arabale, D. Wagh, M. Kulkarni, I. S. Mulla, S. P.
Vernekar, K. Vijayamohanan, and A. M. Rao, Chem. Phys.
Lett., 376, 207 (2003).
117. T. W. Ebbesen, Carbon Nanotubes, Preparation and
Properties, Boca Raton, FL, 1997.
118. R. H. Baughman, C. Cui, A. A. Zakhidov, Z. Iqbal, J.
N. Barisci, G. M. Spinks, G. G. Wallace, A. Mazzoldi,
D. De Rossi, A. G. Rinzler, O. Jaschinski, S. Roth and
M. Kertesz, Science, 284, 1340 (1999).
119. E. Frackowiak, S. Gautier, H. Gaucher, H. Bonnany and
F. Beguin, Carbon, 37, 61 (1999).
120. P. J. Britto, K. S. V. Santhanam and P. M. Ajayan,
Bioelectrochem. Bioenerg., 41, 121 (1996).
121. C. Niu, E. K. Sichel, R. Hoch, D. Moy and H. Tennent,
Appl. Phys. Lett., 1480, 70 (1997).
122. L. C. Chen, C. Y. Wen, C. H. Liang, W. K. Hong, K. J.
Chen, H. C. Cheng, C. S. Shen, C. T. Wu and K. H.
Chen, Adv. Func. Mater., 12, 687 (2002).
123. N. L. Wu, J. Y. Hwang and P. Y. Liu, J. Electrochem.
Soc., 148, A550 (2001).
124. N. L. Wu, S. L. Kuo and M. H. Lee, J. Power Sources,
104, 62 (2002).
125. S. L. Ku and N. L. Wu, Electrochem. Solid-State Lett.,
6, A85 (2003).
126. Y. S. Chen and C. C. Hu, Electrochem. Solid-State
Lett., 6, A210 (2003)
127. A. Kuznetsova, I. Popova, J. T. Yates, M. J.
Bronikowski, C. B. Huffman, J. Liu, R. E. Smalley, H.
H. Hwu and J. G. Chen, J. Am. Chem. Soc., 123, 10699
(2001).
128. F. Valentini, A. Amine, S. Orlanducci, M. L.
Terranova, and G. Palleschi, Anal. Chem., 75, 5413
(2003).
129. K. J. Chen, W. K. Hong, C. P. Lin, K. H. Chen, L. C.
Chen and H. C. Cheng, IEEE Electron Device Lett., 22,
516 (2001).
130. F. G. Tarntair, L. C. Chen, S. L. Wei, W. K. Hong, K.
H. Chen and H. C. Cheng, J. Vac. Sci. Tech. B, 18,
1207 (2000).
131. C. L. Sun, L. C. Chen, M. C. Su, L. S. Hong, O. Chyan,
C. Y. Hsu, K. H. Chen, T. F. Chang and L. Chang, Chem.
Mater., 17, 3749 (2005).
132. C. E. Banks, T. J. Davies, G. G. Wildgoose and R.G.
Compton, Chem. Commun., 7, 829 (2005).
133. A. J. Bard and L. R. Faulkner, Electrochemical
Methods, Fundamentals and Applications, 2nd ed., Wiley
and Sons, New Yor,. 2001.
134. K. Shokoohi, J. M. Tarascon and B. J. Wilkens, Appl.
Phys. Lett., 59, 1260 (1991).
135. B. J. Neudecker, N. J. Dudney and J. B. Bates, J.
Electrochem. Soc., 147, 517 (2001).
136. Y. C. Sato, K. C. Yomogida, T. S. Nanaumi, K. C.
Kobayakawa, Y. H. Ohsawa and M. K. Kawai, Electrochem.
Solid-State Lett., 3, 113 (2000).
137. Q. X. Jia, S. G. Song, X. D. Wu, J. H. Cho, S. R.
Foltyn, A. T. Findikoglu and J. L. Smith, Appl. Phys.
Lett., 68, 1069 (1996).
138. K. Sakiyama, S. Onishi, K. Ishihara, K. Orita, T.
Kajiyama, N. Hosoda and T. Hara, J. Electrochem. Soc.,
140, 834 (1993).
139. J. P. Zheng, T. R. Jow, Q. X. Jia and X. D. Wu, J.
Electrochem. Soc., 143, 1068 (1996).
140. J. R. Zhang, D. C. Jiang, B. Chen, J. J. Zhu, L. P.
Jiang and H. Q. Fang, J. Electrochem. Soc., 148, A1362
(2001).
141. B. E. Conway, V. Birss and J. Wojtowicz, J. Power
Sources, 66, 1 (1997).
142. S. Y. Mar, C. S. Chen, Y. S. Huang and K. K. Tiong,
Appl. Surf. Sci., 90, 497 (1995).
143. Y. B. Mo, W. B. Cai, J. Dong, P. R. Carey and D. A.
Schersona, Electrochem. Solid-State Lett., 4, E37
(2001).
144. S. Trasatti and G. Lodi, In Electrodes of Conductive
Metallic Oxides; Elsevier: Amsterdam, 1981; Part B,
Chapter 10.
145. P. H. Triggs, Phys. Acta, 58, 657 (1985).
146. R. A. Huggins, Ionics, 3, 379 (1997).
147. G.. L. Che, B. B. Lakshmi, E. R. Fisher and C. R.
Martin, Nature, 393, 346 (1998).
148. W. Ehrfeld, Electrochim. Acta, 48, 2857 (2003).
149. K. Koehne, J. Li, A. M. Cassell, H. Chen, Q. Ye, H. T.
Ng, J. Han and M. Meyyapan, J. Mater. Chem., 4, 676
(2004).
150. S. P. Murarka, Silicides for VLSI Applications,
Academic Press, 1983.
151. V. Kolotyrkin, V. Knyazheva, O.Yurchenko, Y.
Kolosvetov and T. Stoyanovskaya, Protection of Metals,
28, 418 (1992).
152. W. G. Moffat, The handbook of binary phase diagrams,
Genium Publication Corporation/Schenectady, New York,
1986.
153. Y. Zhang, T. Ichihashi, E. Landree, F. Nihey and S.
Iijima, Science, 285, 1719 (1999).
154. R. Martel, V. Derycke, C. Lavoie, J. Appenzeller, K.
K. Chan, J. Tersoff and Ph. Avouris, Phys. Rev. Lett.,
87, 256805 (2001).
155. B. Herner, K. S. Jones, H. J. Gossmann, R. T. Tung, J.
M. Poate and H. S. Luftman, J. Appl. Phys., 82, 583
(1997).
156. T. G. Berlincourt, Phys. Rev., 114, 969 (1959).
157. P. T. Kissinger and W. R. Heineman, “Laboratory
Techniques in Electrochemical Chemistry”, Marcel
Dekker, Inc, New York. Basel (1996).
158. M. S. Dresselhaus, G. Dresselhaus and P. C. Eklund,
“Science of Fullerenes and Carbon Nanotubes”,
Academic press, San Diego (1996).
159. W. Z. Li, C. G. Liang, W. J. Zhou, J. S. Qiu, Z. H.
Zhou, G. Q. Sun and Q. Xin, J. Phys. Chem. B, 107,
6292 (2003).
160. K. Shokoohi, J. M. Tarascon and B. J. Wilkens, Appl.
Phys. Lett., 59, 1260 (1991).
161. R. B. Goldner, T. Y. Liu and S. Slaven, J.
Electrochem. Soc., 143, L129 (1996).
162. D. R. Baker and M. W. Verbrugge, J. Electrochem. Soc.,
146, 2413 (1999).
163. J. M. McGraw, C. S. Bahn and P. A. Parilla,
Electrochim. Acta, 45, 187 (1999).
164. J. B. Bates, N. J. Dudney and B. Neudecker, Solid
State Ionics, 135, 33 (2000).
165. S. V. Golod, V. Y. Prinz and P. Wagli, Appl. Phys.
Lett., 84, 3391 (2004).
166. J. H. Sung, S. Kim and K. H. Lee, J. Power Sources,
133, 312 (2004).
167. D. S. Yu, C. H. Huang, A. Chin, C. X. Zhu, M. F. Li,
B. J. Cho and D. L. Kwong, IEEE Elec. Dev. Lett., 25,
138 (2004).
168. Y. H. Wu, W. J. Chen, S. L. Chang, A. Chin, S. Gwo and
C. Tsai, IEEE Elec. Dev. Lett., 20, 200 (1999).
169. C. Y. Lin, M. W. Ma, A. Chin, Y. C. Yeo, C. X. Zhu, M.
F. Li and D. L. Kwong, IEEE Elec. Dev. Lett., 24, 348
(2003).
170. V. S. Neshpor and G. V. Samsonov, Sov. Phys. Solid
State, 2, 1966 (1960).
171. S. P. Muraka and D. B. Fraser, J. Appl. Phys., 51, 350
(1980).
172. V. Kolotyrkin, V. Knyazheva, O. Yurchenko, Y.
Kolosvetov and T. Toyanovskaya, Protection of Metals,
28, 418 (1992).
173. Y. H. Wang, J. Lin, C. H. A. Huan and G. S. Chen,
Appl. Phys. Lett., 79, 680 (2001).
174. W. C. Fang, C. L. Sun, J. H. Huang, L. C. Chen, O.
Chyan, K. H. Chen and P. Papakonstantinou,
Electrochem. Solid-State Lett. (in press).
175. Y. Sawada, H. Tamaru, M. Kogoma, M. Kawase and K.
Hashimoto, J. Phys. D: Appl. Phys., 29, 2539 (1996).
176. B. R. Azamian, J. J. Davis, K. S. Coleman, C. B.
Bagshaw and M. L. H. Green, J. Am. Chem. Soc., 124,
12664 (2002).
177. W. S. Baker and R. M. Crooks, J. Phys. Chem. B, 102,
10041 (1998).
178. J. N. Barisci, G. G. Wallace and R. H. Baughman, J.
Electrochem. Soc., 147, 4580 (2000).
179. J. K. Campbell, L. Sun and R. M. Crooks, J. Am. Chem.
Soc., 121, 3779 (1999).
180. J. H. Chen, Appl. Phys. A, 129 (2002).
181. J. H. Chen, Carbon, 40, 1993 (2002).
182. J. H. Chen, Synthetic Met., 125, 289 (2002).
183. S. Creager, C. J. Yu, C. Bamdad, S. O'Connor, T.
MacLean, E. Lam, Y. Chong, G. T. Olsen, J. Y. Luo, M.
Gozin and J. F. Kayyem, J. Am. Chem. Soc., 121, 1059
(1999).
184. B. A. Cruden, A. M. Cassell, Q. Ye and M. Meyyappan,
J. Appl. Phys., 94, 4070 (2003).
185. J. J. Davis, M. L. H. Green, H. A. O. Hill, Y. C.
Leung, P. J. Sadler, J. Sloan, A. V. Xavier and S. C.
Tsang, Inorg. Chim. Acta, 272, 261 (1998).
186. J. J. Davis, R. J. Coles and H. A. O. Hill, J.
Electroanal. Chem., 440, 279 (1997).
187. C. Demaille, M. Brust, M. Tsionsky and A. J. Bard,
Anal. Chem., 69, 2323 (1997).
188. K. R. Kneton and R. L. McCreery, Anal. Chem., 64, 2518
(1992).
189. S. S. Wong, E. Joselevich, A. T. Woolley, C L. Cheung
and C. M. Lieber, Nature, 394, 52 (1998).
190. S. S. Fan, M. G. Ghapline, N. R. Franlin, T. W.
Tombler, A. M. Cassel and H. G. Dai, Science, 283, 512
(1999).
191. W. K. Hong, K. H. Chen, L. C. Chen, F. G. Tarntair, K.
J. Chen, J. B. Lin and H. C. Cheng, Jpn. J. Appl.
Phys., 40, 3468 (2001).
192. H. C. Cheng, W. K. Hong, F. G. Tarntair, K. J. Chen,
J. B. Lin, K. H. Chen and L. C. Chen, Electrochem.
Solid-State Lett., 4, H5 (2001).
193. Q. Jgo, D. Petranovic, S. Krishnan, A. M. Cassell, Q.
Ye, J. Li, M. Meyyapan and C.Y. Yang, IEEE Trans.
Nanotechnology, 3, 311 (2004).
194. H. Tang, J. H. Chen, Z. P. Huang, D. Z. Wang, Z. F.
Ren, L. H. Nie, Y. F. Kuang and S. Z. Yao, Carbon, 42,
191 (2004).
195. I. H. Kim, J. H. Kim and K. B. Kima, Electrochem.
Solid-State Lett., 8, A369 (2005).
196. N. L. Wu, S. Y. Wang, C. Y. Han, D. S. Wu and L. R.
Shiue, J. Power Sources, 113, 173 (2003).
197. K. S. Kim and N. Winograd, J. Catal., 35, 66 (1974) .
198. H. J. Lewerenz, S. Stucki and R. Kotz, Surf. Sci.,
126, 463 (1983).
199. J. Y. Shen, A. Adnot and S. Kaliaguine, Appl. Surf.
Sci., 51, 47 (1991).
200. C. L. Bianchi, V. Ragaini and M. G. Cattania, Mater.
Phys., 29, 297 (1991).
201. H. Y. H. Chan, C. G. Takoudis and M. J. Weaver, J.
Catal., 172, 336 (1997).
202. C. D. Wagner, D. A. Zatko and R. H. Raymond, Anal.
Chem., 52, 1445 (1980).
203. D. A. McKeown, P. L. Hagans, L. P. L. Carette, A. E.
Russell, K. E. Swider and D. R. Rolison, J. Phys.
Chem. B, 103, 4825 (1999).
204. J. W. Long, K. E. Swider, C. I. Merzbacher and D. R.
Rolison, Langmuir, 15, 780 (1999).
205. H. S. Kim and B. N. Popov, J. Power Sources, 104, 52
(2002).
206. G. H. Deng, X. Xiao, J. H. Chen, X. B. Zeng, D. L. He
and Y. F. Kuang, Carbon, 43, 1557 (2005).
207. P. M. Ajayan, C. Colliex, P. Redlich, J. M. Lambert,
P. Bernier and P. Lefin, Science, 266, 1683 (1994).
208. M. Terrones, P. Redlich, N. Grobert, S. Trasobares, W.
K. Hsu, H. Terrones, Y. Q. Zhu, J. P. Hare, C. L.
Reeves, A. K. Cheetham, M. Rühle, H. W. Kroto and D.
R. M. Walton, Adv. Mater., 8, 655 (1999).
209. R. Czerw, M. Terrones, J.C. Charlier, X. Blasé, B.
Foley, R. Kamalakaran, N. Grobert, H. Terrones, D.
Tekleab, P. M. Ajayan, W. Blau, M. Ruhle and D. L.
Carroll, Nano Lett., 1, 457 (2001).
210. M. Terrones, P. M. Ajayan, F. Banhart, X. Blasé, D.
L. Carroll, J. C. Charlier, R. Czerw, B. Foley, N.
Grobert, R. Kamalakaran, P. Kohler-Redich, M. Ruhle,
T. Seeger and H. Terrones, Appl. Phys. A, 74, 355
(2002).
211. L. H. Chan, K. H. Hong, D. Q. Xiao, T. C. Lin, W. J.
Hsieh, S. H. Lai, F. S. Shieu and H. C. Shih, Appl.
Phys. Lett., 82, 4334 (2003).
212. B. Rajesha, V. Karthika, S. Karthikeyana, K.
Ravindranathan Thampib, J. M. Bonardc and B.
Viswanathana, Fuel, 81, 2177 (2002).
213. H. Ago, T. Kugler, F. Cacialli, W. R. Salaneck, M. S.
P. Shaffer, A. H. Windle and R. H. Friend, J. Phys.
Chem. B, 103, 8116 (1999).
214. L. Valentini, J. M. Kenny, L. Lozzi and S. Santucci,
J. Appl. Phys., 92, 6188 (2002).
215. O. A. Petry, B. I. Podlovchenko, A. N. Frumkin and H.
Lal, J.Electroanal. Chem., 10, 253 (1965).
216. M. R. Andrew and R. W. Glazebrook, An Introduction to
Fuel Cells; Williams, Elsevier: New York, 1966.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top