跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2025/02/13 04:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王冠文
研究生(外文):Kuan-Wen Wang
論文名稱:鈀基合金奈米晶表面改質及其熱性研究
論文名稱(外文):Thermal Properties and Surface Modification of Pd-Based Nanocrystalline Alloys
指導教授:彭宗平彭宗平引用關係
指導教授(外文):Tsong-Pyng Perng
學位類別:博士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:139
中文關鍵詞:奈米晶粒表面改質鈀鎳合金鈀銀合金偏析表面能
外文關鍵詞:nanocrystallinesurface modificationPdNiPd70Ag30surface segregationsurface energy
相關次數:
  • 被引用被引用:0
  • 點閱點閱:307
  • 評分評分:
  • 下載下載:38
  • 收藏至我的研究室書目清單書目收藏:1
摘要
奈米材料因具有非常大的表面積以及表面能,而成為極具吸引力的研究課題。藉由控制其表面積以及表面能,奈米材料的許多特性得以被操控。最常使用的表面改質方式,是在奈米材料表面施覆一層介面活性劑,此介面活性劑可以藉由改變粉體的表面能來增加分散性,亦可抑制燒結時的晶粒成長。藉由這種技術,可以有效控制奈米材料的許多性能。
本研究主要探討鈀基合金奈米晶的表面改質及其熱性質。其熱性質的探討包含了施覆於此合金表面的分散劑之脫附及合金之燒結性質、表面偏析與選擇性氧化。研究的重點為表面改質對以上各種性質的效應。
第一部份主要探討鈀奈米晶粒介面活性劑之脫附(硬脂酸或聚乙二醇),此現象由不同的熱分析儀器量測,並比較其結果。鈀奈米晶粒上施覆介面活性劑亦影響鈀奈米晶粒的燒結現象。第二部分,則以溫度程式脫附儀測量前述兩種介面活性劑自鈀鎳合金(PdxNi1-x)表面的脫附溫度。此脫附溫度與合金的成分及表面能相關,而介面活性劑也會影響合金的燒結現象。
自第三部分到第六部分,主要探討鈀銀合金(Pd70Ag30)奈米晶粒之相關性質。第三部分先回顧合金的製程,並且以不同還原劑成功製備具有不同均勻性的鈀銀合金奈米晶。研究發現,在最均勻成分的合金內(由最強的還原劑NaBH4還原之),經表面偏析後,其表面成分變化最小。第四部分則是用相同均勻度的合金(以HCHO還原)做表面改質(硬脂酸或聚乙二醇),結果顯示,表面改質確實會影響如表面偏析以及燒結等的合金現象,而不同介面活性劑則有不同的效果。
在第五、第六兩部分,主要研究鈀銀合金中的選擇性氧化。在低於300oC的溫度下,鈀的氧化與銀的偏析行為相互競爭,低溫下會有銀粒偏析在表面上,但在較高的溫度下,會有劇烈的氧化反應,且氧化反應較具優勢。表面改質也影響此一現象,特別是在低溫時。
比較介面活性劑抑制燒結的能力,硬脂酸有較佳的效果,其在材料表面的脫附溫度也較聚乙二醇高。
Nanostructured materials are very attractive because of their large surface area and surface energy. By controlling the surface area or surface energy, the properties of nanomaterials can be manipulated. A common surface modification practice is to cover the nanoparticle surface with a layer of surfactant. The surfactant may prevent the particles from agglomeration and grain growth during sintering, and may also increase dispersity as the surface energy changes. Thus, the surface energy and properties of nanomaterials can be changed by this technology.
In this study, thermal properties and surface modification of the Pd-based nanocrystalline alloys were studied. The thermal properties of nanocrystalline alloys include the desorption of surfactants, sintering, surface segregation, and selective oxidation. How the surface modification affects these properties of the nanocrystalline alloys is the main topic of this research.
In the first section, desorption of surfactants, stearic acid (SA) and polyethylene glycol (PEG), from nanocrystalline Pd was studied by thermal analysis. The desorption temperatures measured in different systems were compared. The residual surfactant influences the sintering behavior of the nanocrystalline pellet. In section two, temperature programmed desorption (TPD) was used to identify the desorption temperatures of SA or PEG on the PdxNi1-x nanocrystalline alloys. The desorption temperature could be correlated to the surface energy of the alloys and the surfactants affected the sintering behavior of the alloys. In parts three to six, Pd70Ag30 alloy nanocrystalline was studied in detail. The preparation process of the nanoparticles was reviewed in part three. The nanoparticles with different homogeneities were prepared and surface segregation of these alloys was studied. There is the least change in surface composition in the most homogeneous Pd70Ag30 alloy nanocrystalline prepared by the strongest reducing agent, NaBH4. In sections four, the surface segregation of Pd70Ag30 nanoparticles with the same homogeneity but different surface modifications (SA or PEG) were studied. Surface modification did affect the surface segregation and sintering of the nanoparticles. Different surfactants behaved differently.
In sections five and six, the selective oxidation of Pd70Ag30 alloy nanocrystalline in air was examined. The selective oxidation of Pd competes with surface segregation of Ag at lower temperatures (<300oC). At higher temperatures, intensive oxidation takes place and becomes more dominant. Surface modification (SA or PEG) can change the selective oxidation property at lower temperatures.
As for the suppression of sintering behavior, SA can retard the grain growth of the materials more effectively. The desorption temperature of SA from materials is higher than that of PEG.
Table of Contents
中文摘要
Abstract
誌謝
Chapter Ⅰ Introduction 1
1. Formation Mechanism of Alloy Nanoparticles 3
(1) Monodispersed metal particles 3
(2) Bimetallic particles with core/shell structure 7
(3) Alloy nanoparticles 16
2. Surface Segregation of Alloy Nanoparticles 23
(1) Surface energy and surface segregation 23
(2) Thermal properties 33
3. Surface Modification and Desorption of Surfactants 39
(1) Surface modification 39
(2) Desorption of surfactants 45
Chapter Ⅱ Experimental 49
1. Preparation of Nanocrystalline Pd Particles 49
2. Preparation of Nanocrystalline Pd70Ag30 Particles 49
3. Preparation of Nanocrystalline PdxNi1-x Particles 51
4. Surface Modification 51
5. Analysis Process 54
Chapter Ⅲ Results and Discussion 61
1. Thermal properties of surface modified Pd nanoparticles 63
2. Desorption of surfactants from PdxNi1-x nanoparticles 75
3. Surface segregation and homogenization of Pd70Ag30 alloy
nanoparticles 92
4. Surface segregation of surface modified Pd70Ag30 nanoparticles 103
5. Selective oxidation of Pd70Ag30 nanoparticles 113
6. Selective oxidation of surface modified Pd70Ag30 nanoparticles 121
Chapter Ⅳ Conclusions 128
References 132
References
1. R. Birringer, H. Gleiter, H. P. Klein, and P. Marquardt, Phys. Lett. 1984, 102, 365.
2. S.W. Koch and A. Knorr, Science 2001, 293, 2217.
3. M. Law, D. J. Sirbuly, J. C. Johnson, J. Goldberger, R. J. Saykally, and P. Yang, Science 2004, 305, 1269.
4. J. A. Misewich, R. Martel, P. Avouris, J. C. Tsang, S. Heinze, and J. Tersoff, Science 2003, 300, 783.
5. C. R. Martin and L. A. Baker, Science 2005, 309, 67.
6. Y. Huang, X. Duan, Y. Cui, L. J. Lauhon, K. H. Kim, and C. M. Lieber, Science 2001, 294, 1313.
7. S. D. Franceschi and L. Kouwenhoven, Nature 2002, 417, 701.
8. C. Joachim, J. K. Gimzewski, and A. Aviram, Nature 2000, 408, 541.
9. P. Gambardella, S. Rusponi, M. Veronese, S. S. Dhesi, C. Grazioli, A. Dallmeyer, I. Cabria, R. Zeller, P. H. Dederichs, K. Kern, C. Carbone, and H. Brune1, Science 2003, 300, 1130.
10. C. Mao, D. J. Solis, B. D. Reiss, S. T. Kottmann, R. Y. Sweeney, A. Hayhurst, G. Georgiou, B. Iverson, and A. M. Belcher, Science 2004, 303, 213.
11. L. Lu, Y. Shen, X. Chen, L. Qian, and K. Lu, Science 2004, 304, 422.
12. M. A. Haquea and M. T. A. Saif, Thin Solid Films 2005, 484, 364.
13. G. He, J. Eckert, W. Leoser, and M. Hagiwara, Acta Mater. 2004, 52, 3035.
14. S. B. Lee, D. T. Mitchell, L. Trofin, T. K. Nevanen, H. Soderlund, and C. R. Martin1, Science 2002, 296, 2198.
15. A. Kikuchi and T. Okano, J. Control. Release 2005, 101, 69.
16. T. A. Taton, Nature mater. 2003, 2, 73.
17. F. Chen, Z. C. Wang, and C. J. Lin, Mater. Lett. 2002, 57 858.
18. M. S. Chen and D. W. Goodman, Science 2004, 306, 252.
19. D. R. Rolison, Science 2003, 299, 1698.
20. R. F. Service, Science 2004, 304, 1732.
21. K. S. Jayaraman, Nature 1999, 400, 95.
22. P. Yang, Nature 2003, 425, 243.
23. C. M. Niemeyer, Science 2002, 297, 62.
24. M. H. A. Hassan, Science 2005, 309, 65.
25. G. Y. Tseng and J. C. Ellenbogen, Science 2001, 294, 1293.
26. A. P. Davis, Nature 1999, 401, 120.
27. P. L. McEuen, Nature 1998, 393, 15.
28. L. Kouwenhoven, Nature 2000, 403, 374.
29. M. Harada, K. Asakura, and N. Toshimavt, J. Phys. Chem. 1993, 97, 5103.
30. N. Toshima, M. Harada, Y. Yamazaki, and K. Asakurat, J. Phys. Chem. 1992, 96, 9927.
31. M. Faraday, Philos. Trans. R. Soc. London A 1887, 147, 145.
32. E. Dickinson, Curr. Opin. Colloid Interface Sci. 2003, 8, 346.
33. H. G. Weder and M. A. Weder, Cosmetic nanodispersion. Eur. Pat. Appl. 1998, 11 pp, EP 852941.
34. J. Park, V. Privman, and E. Matijevic, J. Phys. Chem. B 2001, 105, 11630.
35. S. H. Wu and D. H. Chen, J. Colloid Interface Sci. 2003, 259, 282.
36. E. Matijevic, Langmuir 1994, 10, 8.
37. E. Matijevic, Chem. Mater. 1993, 5, 412.
38. D. V. Goia and E. Matijevic, Colloids and Surf. A: Physicochem and Eng. Asp. 1999, 146, 139.
39. I. Sondi, D. V. Goia, and E. Matijevic, J. Colloid Interface Sci. 2003, 260, 75.
40. D. V. Goia, J. Mater. Chem. 2004, 14, 451.
41. D. V. Goia and E. Matijevic, New J. Chem. 1998, 1203.
42. A. F. Lee, C. J. Baddeley, C. Hardacre, R. M. Ormerod, R. M. Lambert, G. Schmid, and H. West, J. Phys. Chem. 1995, 99, 6096.
43. Y. Wang and N. Toshima, J. Phys. Chem. B 1997, 101, 5301.
44. P. K. Babu, H. S. Kim, E. Oldfield, and A. Wieckowski, J. Phys. Chem. B 2003, 107, 7595.
45. P. Miegge, J. Rousset, B. Tardy, J. Massardier, and J. C. Bertolini, J. Catal. 1994, 149, 404.
46. A. C. Michel, L. Lianos, J. L. Rousset, P. Delichere, N. S. Prakash, J. Massardier, Y. Jugnet, and J. C. Bertolini, Surf. Sci. 1998, 416, 288.
47. N. Toshima and K. Hirakawa, Appl. Surf. Sci. 1997, 121/122, 534.
48. M. L. Wu, D. H. Chen, and T. C. Huang, Langmuir 2001, 17, 3877.
49. Z. Kaszkur, Phys. Chem. Chem. Phys. 2004, 6, 193.
50. M. P. Mallin and C. J. Murphy, Nano lett. 2002, 2, 1235.
51. D. H. Chen and C. J. Chen, J. Mater. Chem. 2002, 12, 1557.
52. Y. Liu and P. Wynblatt, Surf. Sci. 1993, 290, 335.
53. V. Kumar, D. Kumar, and S. K. Joshi, Phys. Rev. B 1979, 19, 1954.
54. A. Vazquez and F. Pedraza, Appl. Surf. Sci. 1996, 99, 213.
55. K. W. Park, J. H. Choi, B. K. Kwon, S. A. Lee, Y. E. Sung, H. Y. Ha, S. A. Hong, H. Kim, and A. Wieckowski, J. Phys. Chem. B 2002, 106, 1869.
56. P. Wynblatt and R. C. Ku, Surf. Sci. 1977, 65, 511.
57. L. Z. Mezey and J. Giber, J. Phys. C: Solid State Phys. 1983, 16, 5683.
58. D. A. Mervyn, R. J. Baird, and P. Wynblatt, Surf. Sci. 1979, 82, 79.
59. W. Hofer and L. Z. Mezey, Fresenius J. Anal. Chem. 1997, 358, 169.
60. L. Z. Mezey and J. Giber, Jpn. J. Appl. Phys. 1982, 21, 1569.
61. L. Z. Mezey and W. Hofer, Surf. Sci. 1995, 331, 799.
62. Z. X. Cao, J. Phys.: Condens. Matter 2001, 13, 7923.
63. W. Hofer and L. Z. Mezey, Fresenius J. Anal. Chem. 1995, 353, 631.
64. L. N. Gumen, E. P. Feldman, V. M. Yurchenko, T. N. Melnik, A. A. Krokhin, Surf. Sci. 2000, 445, 526.
65. P. Wynblatt and A. Landa, Computational Mater. Sci. 1999, 15, 250.
66. L. Z. Mezey, and J. Giber, Surf. Sci. 1983, 127, 1, L98.
67. G. Bozzolo, and R. D. Noebe, Acta Mater. 2003, 51, 4395.
68. A. C. Michel, L. Lianos, J. L. Rousset, P. Delichere, N. S. Prakash, J. Massardier, Y. Jugnet, J. C. Bertolini, Surf. Sci. 1998, 416, 288.
69. J. C. Bertolini, Appl. Catal. A: General 2000, 191, 15.
70. J. L. Rousset, J. C. Bertolini, and P. Miegge, Phys. Rev. B 1996, 53, 4947.
71. H. E. Boyer and T. L. Gell, (eds), Metals Handbook, Desk Edition, ASM, 1985, p. 2-19.
72. P. L. Hansen, A. M. Molenbroek, and A. V. Ruban, J. Phys. Chem. B 1997, 101, 1861.
73. S. Verdier, B. Didillon, S. Morin, and D. Uzio, J. Catal. 2003, 218, 288.
74. L. Z. Mezey and J. Giber, Phys. Scripta 1983, 28, 97.
75. J. Erlebacher, M. J. Aziz, A. Karma, N. Dimitrov, and K. Sieradzki, Nature 2001, 410, 450.
76. G. D. Marchi, G. Mattei, P. Mazzoldi, and C. Sada, Phys. Rev. B 2001, 63, 075409.
77. G. Mattei, G. D. Marchi, C. Maurizio, P. Mazzoldi, C. Sada, V. Bello, and G. Battaglin, Phys. Rev. Lett. 2003, 90, 085502.
78. G. Battaglin, M. Catalano, E. Cattaruzza, F. D’Acapito, C. D. Fernandez, G. D. Marchi, F. Gonella, G. Mattei, C. Maurizio, P. Mazzoldi, A. Miotello, and C. Sada, Nucl. Instr. Meth. B 2001, 178, 176.
79. G. Mattei, G. Battaglin, V. Bello, E. Cattaruzza, C. D. Julian, G. D. Marchi, C. Maurizio, P. Mazzoldi, M. Parolin, and C. Sada, Nucl. Instr. Meth. B 2004, 218, 433.
80. G. Battaglin, E. Cattaruzza, G. D. Marchi, F. Gonella, G. Mattei, C.Maurizio, P. Mazzoldi, M. Parolin, C. Sada, and I. Calliari, Nucl. Instr. Meth. B 2002, 191, 392.
81. V. M. Azambuja, L. Pontonnier, D. S. Santos, S. Miraglia, and D. Fruchart, J. Alloys Comp. 2003, 356, 688.
82. X. Liu, Y. Guan, Z. Ma, and H. Liu, Langmuir 2004, 20, 10278.
83. K. C. Popat, G. Mor, C. A. Grimes, and T. A. Desai, Langmuir 2004, 20, 8035.
84. A. B. Bourlinos, A. Simopoulos, N. Boukos, and D. Petridis, J. Phys. Chem. B 2001, 105, 7432.
85. C. Y. Ishii, G. P. Miller, M. L. Kraft, E. T. Kool, and S. G. Boxer, J. Am. Chem. Soc. 2005, 127, 1356.
86. J. Ji, Y. Chen, R. A. Senter, and J. L. Coffer, Chem. Mater. 2001, 13, 4783.
87. K. Esumi, J. Colloid Interface Sci. 2001, 241, 1.
88. B. L. Cushing, V. L. Kolesnichenko, and C. J. Oconnor, Chem. Rev. 2004, 104, 3893.
89. X. Tenga and H. Yang, J. Mater. Chem. 2004, 14, 774.
90. N. L. Wu, S. Y. Wang, and I. A. Rusakova, Science 1999, 285, 1375.
91. J. H. Chen and E. Ruckenstein, J. Colloid Interface Sci. 1991, 142, 544.
92. W. D. Kingery, H. K. Bowen, and D. R. Uhlmann, Introduction to Ceramics, 2nd edition, John Wiley & Sons. 1991, p181.
93. A. Meier, I. Uhlendorf, and D. Meissner, Electrochmica Acta 1995, 40, 1523.
94. L. Yang and P. Alexandridis, Curr. Opin. Colloid Interface Sci. 2000, 5, 132.
95. V. Lordi, N. Yao, and J. Wei, Chem. Mater. 2001, 13, 733.
96. G. Wahl, M. Pulver, W. Decker, and L. Klippe, Surf. Coat. Technol. 1998, 100, 132.
97. K. Fujita, Surf. Coat. Technol. 2005, 196 ,139.
98. K. Akamatsu, T. Tsuruoka, and H. Nawafune, J. Am. Chem. Soc. 2005, 127, 1634.
99. W. J. Tseng, D. M. Liu, and C. K Hsu, Ceram. Int. 1999, 25, 191.
100. S. T. Lin, and R, M. German, J. Mater. Sci. 1994, 29, 5207.
101. J. S. Reed, Principle of Ceramics Processing, Wiley-Interscience, 1995.
102. C. Panja, N. Saliba, and B. E. Koel, Surf. Sci. 1998, 395, 248.
103. A. Ramstad and S. Raaen, Phy. Rev. B. 1999. 59, 15935.
104. M. Kildemo, T. Ramsvik, and S. Raaen, Surf. Sci. 2001, 490, 1.
105. I. Matolinova, S. Fabik, K. Masek, L. Sedlacek, T. Skala, K. Veltruska, and V. Matolin, Vacuum 2003, 71, 4.
106. S. K. Shaikhutdinov, R. Meyer, M. Naschitzki, M. Baumer, and H. J. Freund, Catal. Lett. 2003, 86, 211.
107. C. U. Huang, H. J. Chiang, J. C. Huang, and S. R. Sheen, NanoStruct. Mater. 1998, 10, 1393.
108. J. J. Chiu, Master’s Thesis 1999, National Tsing Hua University.
109. P. Y. Silvert, V. Vijayakrishnan, P. Vibert, R. Herrera-Urbina, and K. T. Elhsissen, NanoStructured Mater. 1996, 7, 611.
110. K. Torigoe and K. Esumi, Langmuir, 1993, 9, 1664.
111. G. Chen and T. Gua, J. Phys. Chem. B 2002, 106, 5833.
112. H. Y. Lee, T. B. Wu, and J. F. Lee, J. Appl. Phys. 1996, 80, 2175.
113. C. W. Chou, S. J. Chu, H. J. Chiang, C. Y. Huang, C. J. Lee, S. R. Sheen, T. P. Perng, and C. T. Yeh, J. Phys. Chem. 2001, 105, 9113.
114. NIST chemistry webbook, http://webbook.nist.gov/chemistry, NIST Standard Ref. Database No. 69, March 2003 Release, EPA MS number 36485.
115. J. Rodriguez and D. W. Goodman, Science 1992, 257, 14.
116. H. C. Chu, S. R. Sheen, C. T. Yeh, and T. P. Perng, J. Alloys Compd. 2001, 322, 198.
117. B. C. Khanra, J. C. Bertolini, J. L. Rousset, and J. Molecular Catal. A: Chem. 1998, 129, 233.
118. M. Pourbaix, Atlas of electrochemical equilibria in aqueous solutions, 2nd Edition, National Association of Corrosion Engineers, 1974.
119. M. Krawczyk, Appl. Surf. Sci. 35 (1998) 209.
120. A. Rodriguez, H. Brachta, I. Yonenaga, J. Appl. Phys. 95 (2004) 12.
121. G. Chen and T. Gua, J. Phys. Chem. B 2002, 106, 5833.
122 X. Teng and H. Yang, J. Mater. Chem. 2004, 14, 774.
123. K. W. Wang, S. R. Chung, L. Y. Jang, J. F. Lee, and T. P. Perng, J. Alloys Compd., in press.
124. K. W. Wang, S. R. Chung, and T. P. Perng, J. Alloys Compd., in press.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top