跳到主要內容

臺灣博碩士論文加值系統

(44.220.247.152) 您好!臺灣時間:2024/09/15 08:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃瀛文
研究生(外文):Ying-Wen Huang
論文名稱:於矽基板上製作具PN接面的新型態自旋電晶體研究
論文名稱(外文):Study of new type spin transistors based on silicon pn junction
指導教授:黃金花黃金花引用關係
指導教授(外文):Jin-Hua Huang
學位類別:博士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:96
中文關鍵詞:自旋電子磁電阻磁電流自旋電晶體
外文關鍵詞:spintronicsmagnetoresistancemagnetocurrentspin transistor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:317
  • 評分評分:
  • 下載下載:29
  • 收藏至我的研究室書目清單書目收藏:1
本論文以研究於具PN接面的新型態自旋電晶體。此一型態自旋電晶體主要是在Si(100)上結合磁阻元件(巨磁阻或穿隧磁阻)與PN接面所製做而成的自旋閥電晶體或磁穿隧電晶體。自旋閥電晶體於室溫與具有射極偏壓和基極偏壓的共集電路量測中,射極電流於磁矩平行排列時為1mA,於磁矩反平行排列時為0.968mA。相同的狀況下,基極電流變化從29.3mA到333nA。其電流變化率為8600%,交換率(IB/IE)為3×10−2。於低溫(77K)與利用5.12V的射極偏壓與一基極電阻所構成的共集電路量測中,可得集極電流變化率為3400%。集極電流於磁矩排列為平行態時為95.5uA,電流轉換率為2.59E−3。於室溫量測時,集極電流輸出變為98.3uA,變化率降至55.3%,轉換率為5.98×E−3。以上的實驗可利用實驗值與電腦計算加以驗證。並且找出一適當的射極偏壓與基極電阻,可以得到最高的集極電流變化率。磁性穿隧電晶體於室溫量測與一具有射極偏壓與基極偏壓的共集電路量測中,可以得到基極電流從1.9nA變化到123nA,其變化率為6300%。於室溫與具有射極偏壓與基極電阻的共集電路量測中可發現,射極偏壓為1.25±025V時,集極電流變化率均大於40%。且於磁矩平行態排列時,輸出電流(集極電流)均大於4uA。除此之外,自旋閥電晶體於室溫且AC頻率從100 Hz到15 MHz阻抗亦被研究。將一自旋閥電晶體視為數個電阻、電容與電感的等效電路。其中阻抗包含的實部部分(R)與虛部部分(X)。於頻率分別為6.5Hz與3.65Hz時,MZ與MX分別趨近於零。實驗發現剛幫頻率小於這兩個值時,MZ與MX對磁場的表現將發生反相的結果。而這些結果將有助於自旋電晶體於高頻應用時的研究。
This work has focused on the study of two new type silicon-base spin transistors. These two new type spin transistors are combined either pseudo spin-valve or magnetic tunneling junction with a p-n junction to form a spin-valve transistor (SVT) or magnetic tunneling transistor (MTT). For SVT, the emitter current (IE) changed from 1uA to 0.968uA at different magnetically states in the common collector (CC) circuitry with an emitter bias (VE) and a base bias (VB) at room temperature (RT). At the same states the base currents (IB) changed form 29.3 uA to 333 nA which gave a magnetocurrent (MC) of 8600% and a transfer ratio (α) of 3E−2. In CC configuration with a base resistor (RB) and an VE of 5.12 V at 77 K gives a large collector current (IC) of more than 95.5 mA and the change is more than 3400% with a α of 2.59E−3. At RT, these changes go down to 98.3 mA and 55.3%, respectively, and the α rises to 5.98E−3. The MC of the collector in a SVT has been studied with both experiments and computer calculations. For MTT, IB change of roughly 6300% has been observed in the CC configuration with an VE and a VB at RT. In CC configuration with VE and RB at RT, the MC of the collector can be stabilized roughly above 40% at VE = 1.25±025V with α of 2.88% in the CC circuitry. IC can be more than 4 uA at the magnetic parallel state. The magnetoimpedance (MZ) effect of the SVT was investigated at RT in the frequency ranged from 100 Hz to 15 MHz. The SVT can be regarded as a complex combination of resistors, inductors, and capacitors; all these components exhibit magnetic hysteresis. It is due to the frequency dependent behavior that R does not reach a minimum at the resonant frequency (fr). The frequency dependences of MZ and MX ratios cross zero at fx = 6.5 MHz and at fr=3.65 MHz, respectively. The shape of magnetoreactance loop is reversed to the magnetoresistance loop. The MZ loop also reverses shape and sign after crossing fx.
Contents i
中文摘要 ii
Abstract iii
List of Figures iv
List of Tables ix

Chapter 1 Introduction 1
Chapter 2 Review of Magnetoresistance effects and the spin-valve transistors 6
2-1 Magnetoresistance effects 6
2-2 M. Johnson all-metal spin transistor 16
2-3 Spin-valve transistor 20
2-4 Magnetic tunneling transistor 24
Chapter 3 Instruments and the fabrication processes 31
3-1 Deposition setup 31
3-2 ultraviolet light assisted oxidation equipment 32
3-3 Electron beam lithography system 34
3-4 The fabrication processes of the spin transistors 36
Chapter 4 Results and discussions 43
4-1 Pseudo spin-valve transistor 43
4-2 Theory simulation 60
4-3 Magnetic tunneling transistor 66
4-4 Impedance Behavior of Spin Valve Transistor 76
Chapter 5 Conclusion 84
Bibliography 88
[1] M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen Van Dau, and F. Petroff, “Giant Magnetoresistance of (001)Fe/(001)Cr Magnetic Superlattices”, Phys. Rev. Lett., vol. 61, p.2472, 1988
[2] K. Derbyshire and E. Korczynski, “Giant magnetoresistance for tomorrow’s hard drives”, Solid State Technol, vol. 38, p.57, 1995.
[3] J.E. Lenz, “A review of magnetic sensors”, Proc. of IEEE, vol.78, p.973, 1990.
[4] H. Yamamoto and K. Yamada, “The application of giant MR films to magnetic devices”, Mater Sci Eng B-Solid State M, vol. 31, p.207, 1995.
[5] M. Ueda, M. Endoh and N. Wakatsuki, “Development of a sensitive and stable magnetoresistive sensor”,CHMT ’89 Japan IEMT Symposium, Kanagawa, Japan, p.192, , 1989.
[6] D.E. Heim, R.E. Fontana, C. Tsang, V.S. Speriosu, B.A. Gurney, and M.L. Williams, “Design and Operation of Spin Valve Sensors”, IEEE Trans Magn, vol. 30, p.316, 1994.
[7] Y. Taga, “Thin film sensors for automobiles”, J Vac Sci & technol A, vol. 13, p.990, 1995.
[8] R.S. Popovic, J.A. Flanagan and P.A. Besse, “The future of magnetic sensors”, Sensor Actuator A-Phys, vol. 56, p.39, 1996.
[9] P.Ripka, “Noise and stability of magnetic sensors”, J Magn Magn Mater, vol. 158, p.424, 1996.
[10] T.J. Moran and E.D. Dahlberg, “Magnetoresistive sensor for weak magnetic fields”, Appl Phys Lett, vol. 70, p.1894, 1997.
[11] K.M.H. Lenssen, A.E.M. Deveirman and J.J.T.M. Donkers, “Inverted spin valves for magnetic heads and sensors”, J Appl Phys, vol. 81, p.4915, 1997.
[12] A.V. Pohm, R.S. Beech, J.M. Anderson and W.C. Black, “Narrow end-on giant magnetoresistance READ-head sensors”, IEEE Trans Magn, vol. 33, p.2392, 1997.
[13] H.A.M. van den Berg, W. Clemens, G. Gieres, G. Rupp, M. Vieth, J. Wecker and S. Zoll, “GMR angle detector with an artificial antiferromagnetic subsystem (AAF)”, J Magn Magn Mater, vol. 165, p.524, 1997.
[14] J.A. Brug, L. Tran, M. Bhattacharyya, J.H. Nickel, T.C. Anthony and A. Jander, “Impact of new magnetoresistive materials on magnetic recording heads”, J Appl Phys, vol. 79, p.4491, 1996.
[15] J.A. Brug, T.C. Anthony and J.H. Nickel, “Magnetic recording head materials”, MRS Bull, vol. 21, p.23, 1996.
[16] O. Kitakami, H. Takashima and Y. Shimada, “Study of NiO/NiFe/Cu/NiFe spin valves”, JMMM, vol. 164, p.43, 1996.
[17] N. Smith, A.M. Zeltser and M.R. Parker, “GMR multilayers and head design for ultrahigh density magnetic recording”, IEEE Trans Magn, vol. 32, p.135, 1996.
[18] R.E. Fontana, “Process Complexity of magnetoresistive sensors: A review”, IEEE Trans Magn, vol. 31, p.2579, 1995.
[19] W. Folkerts, J.C.S. Kools, T.G.S.M Rijks, R. Coehoorn, M.C. Denooijer, G.H.J. Somers, J.J.M. Ruigrok and L. Postma, “Application of giant magnetoresistive elements in thin film tape heads”, IEEE Trans Magn, vol. 30, p.3813, 1994.
[20] R.L. White, “Giant Magnetoresistance Materials and Their Potential as Read Head Sensors”, IEEE Trans Magn, vol. 30, p.346, 1994.
[21] D. Bursky, “Enhanced Magnetoresistive R/W Head Promises 50X Boost in Disk Storage”, Electron Des, vol. 41, p.46, 1993.
[22] F.B. Shelledy and J.L. Nix, “Magnetoresistive Heads for Magnetic Tape and Disk Recording”, IEEE Trans Magn, vol. 28, p.2283, 1992.
[23] P.Ciureanu and G. Korony, “Effects of annealing and geometry optimization on a thin magnetoresistive head”, Sens. & Actuators, vol. 13, p.229, 1988.
[24] J.M. Daughton, “Magnetoresistive Memory Technology”, Thin Solid Films, vol. 216, p.162, 1992.
[25] 2.25 A.W. Pohm, J.S.T. Huang, J.M. Daughton, D.R. Krahn and V. Mehra, “The design of a one megabit non-volatile M-R memory chip using 1.5 x 5um cells”, IEEE Trans. Magn , vol. 24, p.3117, 1988.
[26] C. Tsang, M.M. Chen and T. Yogi, “Gigabit-Density Magnetic Recording”, Proc IEEE, vol. 81, p.1344, 1993.
[27] S.M. Sze, Semiconductor sensors, John Wiley & Sons, Inc., New York ,1994.
[28] H. Schewe and W. Schelter, “Industrial applications of magnetoresistive sensors”, Sensors and Actuators A, vol. 59, p.165, 1997.
[29] K.M.H. Lenssen, H.W. van Kesteren, Th.G.S.M. Rijks, J.C.S. Kools, M.C. de Nooijer, R. Coehoorn and W. Folkerts, “Giant magnetoresistance and its application in recording heads”, Sensors and Actuators A, vol. 60, p.90, 1997.
[30] D.J. Mapps, “Magnetoresistive sensors”, Sensors and Actuators A, vol. 59, p.9, 1997.
[31] Prinz G. A., “Magnetoelectronics”, Science, vol. 282, p. 1660, 1998
[32] S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnár,6 M. L. Roukes,7 A. Y. Chtchelkanova,8 D. M. Treger, “Spintronics: A Spin-Based Electronics Vision for the Future”, Science 294, 1488, 2001
[33] S. S. P. Parkin, X. Jiang, C. Kaiser, A. Panchula, K. Roche, and M. Samant, “Magnetically Engineered Spintronic Sensors and Memory”, Proc. IEEE, vol. 91, p. 661, 2003
[34] J. S. Moodera, Lisa R. Kinder, Terrilyn M. Wong, and R. Meservey, “Large Magnetoresistance at Room Temperature in Ferromagnetic Thin Film Tunnel Junctions”, Phys. Rev. Lett. Vol., 74, p.3273, 1995
[35] Moodera, Jagadeesh S.; Mathon, George, “Spin polarized tunneling in ferromagnetic junctions”, J. Magn. Magn. Mater., vol. 200, p.248, 1999
[36] J. M. Kikkawa and D. D. Awschalom, “Resonant Spin Amplification in n-Type GaAs”, Phys. Rev. Lett., vol. 80, p.4313, 1998
[37] J. M. KIKKAWA1 and D. D. AWSCHALOM1, “Lateral drag of spin coherence in gallium arsenide”, Nature, vol. 397, p.139, 1999
[38] Ohno H, “Making Nonmagnetic Semiconductors Ferromagnetic”, Science, vol. 281, p.951, 1998
[39] H. Ohno, D. Chiba, F. Matsukura, T. Omlya, E. Abe, T. Dietl, Y. Ohno, and K. Ohtani, “Electric-field control of ferromagnetism”, Nature, vol. 408, p.944, 2000
[40] Y. D. Park, A. T. Hanbicki, S. C. Erwin, C. S. Hellberg, J. M. Sullivan, J. E. Mattson, T. F. Ambrose, A. Wilson, G. Spanos, B. T. Jonker, “A Group-IV Ferromagnetic Semiconductor: MnxGe1-x”, Science, vol. 295, p.651, 2002
[41] Supriyo Datta and Biswajit Das, “Electronic analog of the electro-optic modulator”, Appl. Phys. Lett., vol. 56, p.665, 1990
[42] H. J. Zhu, M. Ramsteiner, H. Kostial, M. Wassermeier, H.-P. Schönherr, and K. H. Ploog, “Room-Temperature Spin Injection from Fe into GaAs”, Phys. Rev. Lett., vol. 87, p.016601, 2001
[43] A. T. Hanbicki, B. T. Jonker, G. Itskos, G. Kioseoglou, and A. Petrou, “Efficient electrical spin injection from a magnetic metal/tunnel barrier contact into a semiconductor”, Appl. Phys. Lett., vol. 80, p.1240, 2002
[44] A. T. Hanbicki, O. M. J. van 't Erve, R. Magno, G. Kioseoglou, C. H. Li, B. T. Jonker, G. Itskos, R. Mallory, M. Yasar, and A. Petrou, “Analysis of the transport process providing spin injection through an Fe/AlGaAs Schottky barrier”, Appl. Phys. Lett., vol. 82, p. 4092, 2003
[45] V. F. Motsnyi, J. De Boeck, J. Das, W. Van Roy, G. Borghs, E. Goovaerts , and V. I. Safarov, “Electrical spin injection in a ferromagnet/tunnel barrier/semiconductor heterostructure”, Appl. Phys. Lett. vol. 81, p. 265, 2002
[46] Pol Van Dorpe, Vasyl F. Motsnyi, Mayke Nijboer, Etienne Goovaerts, Viacheslav I. Safarov, Jo Das, Wim Van Roy, Gustaaf Borghs and Jo De Boeck, “Highly Efficient Room Temperature Spin Injection in a Metal-Insulator-Semiconductor Light-Emitting Diode”, Jpn. J. Appl. Phys., vol. 42, p. L520, 2003
[47] D. J. Monsma, J. C. Lodder, Th. J. A. Popma, and B. Dieny, “Perpendicular Hot Electron Spin-Valve Effect in a New Magnetic Field Sensor: The Spin-Valve Transistor”, Phys. Rev. Lett., vol. 74, p.5260, 1995
[48] P.S. Anil Kumar, R. Jansen, O.M.J. van Erve, R. Vlutters, P. de Haan and J.C. Lodder, “Low-field magnetocurrent above 200 % in a spin-valve transistor at room temperature”, J. Magn. Magn. Mater. 214 L1, 2000
[49] R. Jansen, P. S. Anil Kumar, O. M. J. van't Erve, R. Vlutters, P. de Haan, and J. C. Lodder, “Thermal Spin-Wave Scattering in Hot-Electron Magnetotransport Across a Spin Valve” Phys. Rev. Lett., vol. 85, p.3277, 2000
[50] Sebastiaan van Dijken, Xin Jiang, and Stuart S. P. Parkin, Appl. Phys. Lett., “Room temperature operation of a high output current magnetic tunnel transistor”, vol. 80, p.3364, 2002
[51] Sebastiaan van Dijken, Xin Jiang, and Stuart S. P. Parkin, “Giant magnetocurrent exceeding 3400% in magnetic tunnel transistors with spin-valve base layers”, Appl. Phys. Lett., vol. 83, p. 951, 2003
[52] R. Sato and K. Mizushima, “Spin-valve transistor with an Fe/Au/Fe(001) base”, Appl. Phys. Lett., vol. 79, p.1157, 2001
[53] C. L. Dennis, C. Sirisathitkul, G. J. Ensell, J. F. Gregg, and S. M. Thompson, “High current gain silicon-based spin transistor”, J. Phys. D: Appl. Phys., vol. 36, p. 81, 2003
[54] Huang, Y. W.; Lo, C. K.; Yao, Y. D.; Hsieh, L. C.; Ju, J. J.; Huang, D. R.; Huang, J. H., “Giant magnetocurrent in silicon-base magnetic tunneling transistor”, J. Magn. Magn. Mater., 282, 279 (2004)
[55] Y. W. Huang, C. K. Lo, Y. D. Yao, L. C. Hsieh, J. J. Ju, D. R. Huang, and J. H. Huang, “Magnetocurrent in a bipolar spin transistor at room temperature”, Appl. Phys. Lett., vol. 85, p.2959, 2004
[56] Y. W. Huang, C. K. Lo, Y. D. Yao, L. C. Hsieh, and J. H. Huang, “Spin-valve transistor”, J. Appl. Phys., vol. 97, p.10D504 (2005)
[57] Y. W. Huang, C. K. Lo, Y. D. Yao, L. C. Hsieh, and D. R. Huang, “Room-Temperature Stability Study in Silicon Base Magnetic Tunneling Transistor”, IEEE Trans. Magn., vol. 41, p.2682, 2005
[58] Y. W. Huang, C.K. Lo, J. H. Kuo, J. H. Huang, Y.D. Yao, “SPIN-VALVE TRANSISTOR WITH A NP JUNCTION”, J. Magn. Magn. Mater., in press (2006)
[59] O. M. J. van 't Erve, R. Vlutters, P. S. Anil Kumar, S. D. Kim, F. M. Postma, R. Jansen, and J. C. Lodder, “Transfer ratio of the spin-valve transistor”, Appl. Phys. Lett., vol. 80, p.3787, 2002
[60] A. V. Pohm, B. A. Everitt, R. S. Beech, J. M. Daughton, “BIAS FELD AND END EFFECTS ON THE SWITCHING THRESHOLDS OF "PSEUDO SPIN VALVE" MEMORY CELLS”, IEEE Trans. Magn., vol. 35, p.3280, 1997
[61] Teruya Shinjo and Hidefumi Yamamoto, “Large Magnetoresistance of Field-Induced Giant Ferrimagnetic Multilayers”, J. Phys. Soc. Jpn., vol. 59, p. 3061, 1990
[62] D.E.Heim, R.E.Fontana, "Design and operation of spin-valve sensors:, IEEE trans. Magn. , vol. 30, p. 316, 1994
[63] B.A. Gurney, and M.L. Williams,"Design, fabrication & testing of spin – valve read heads for high density recording" IEEE Trans. Magn. , vol. 30, p 3801, 1994
[64] P. Ten Berge, N.J. Oliveira, "Spin-valve MR heads for tape and disk applications" IEEE Trans. Magn., vol. 32, p. 149, 1995
[65] M. Xiao and M.H. Kryder, "Fabrication process for high density shielded spin-valve magnetoresistive heads," Electrochemical Society meeting, Oct. 1995
[66] D.J.Monsma, R.Vlutters, "Development of the spin-valve transistor" IEEE Trans. Magn. Vol. 33, p. 3495, 1997
[67] K.T.M.Ranmuthu, A.V.Pohm, "New Low Current Memory Modes with Giant MR Materials" IEEE Trans. Magn. Vol. 29, p. 2593, 1993
[68] K. Matsuyama, H.Asada, S.Ikeda, K.Taniguchi "Low Current Magnetic-RAM Memory Operation with a High Sensitive Spin Valve Material" IEEE Trans. Magn. Vol. 33, p. 3283, 1997
[69] Y.Zheng, J.Zhu "Characteristics of AP Bias in Spin Valve Memory Elements" IEEE Trans. Magn., vol. 34, p. 1063, 1998
[70] B.A. Everitt, A.V. Pohm "Single-Domain Model for Pseudo Spin Valve MRAM Cells" IEEE Trans. Magn., vol. 33, p. 3289, 1997
[71] A.V. Pohm, B.A. Everitt, R.S. Beech, ect "Bias firld and end effects on teh switching thresholds of "Pseudo spin valve" memory cells" IEEE Trans. Magn. Vol., vol. 33, p. 3280, 1997
[72] Yousuke Irie, Hiroshi Sakakima, Mitsuo Satomi and Yasuhiro Kawawake, “Spin-Valve Memory Elements Using [{Co-Pt/Cu/Ni-Fe-Co}/Cu] Multilayers”, Jpn. J. Appl. Phys. vol. 34, p. L415, 1995
[73] Tang, D.D.; Wang, P.K., Speriosu, V.S.; Le, S., and Kung, K.K., “Spin-valve RAM cell”, IEEE trans. Magn., vol. 31, p.3206, 1995
[74] M. Julliere, “Tunneling between ferromagnetic films”, Phys. Lett. vol. 54A, p. 225, 1975
[75] Miyazaki, T.; Tezuka, N., “Giant magnetic tunneling effect in Fe/Al2O3/Fe junction”, J. Magn. Magn. Mater., vol. 139, p. L231, 1995
[76] J. S. Moodera, Lisa R. Kinder, Terrilyn M. Wong, and R. Meservey, “Large Magnetoresistance at Room Temperature in Ferromagnetic Thin Film Tunnel Junctions”, Phys. Rev. Lett., vol. 74, p. 3273, 1995
[77] S. Maekawa and U. Gafvert, “Electron Tunneling Between Ferromagnetic Films,” IEEE Trans. Magn., vol. MAG-18, p. 707, 1982
[78] P. M. Tedrow and R. Meservey, “Spin-Dependent Tunneling into Ferromagnetic Nickel”, Phys. Rev. Lett., vol. 26, p. 192, 1971
[79] R. J. Soulen Jr., J. M. Byers, M. S. Osofsky, B. Nadgorny, T. Ambrose, S. F. Cheng, P. R. Broussard, C. T. Tanaka, J. Nowak, J. S. Moodera, A. Barry, J. M. D. Coey, “Measuring the Spin Polarization of a Metal with a Superconducting Point Contact”, Science, vol. 282, p. 85, 1998
[80] S. S. P. Parkin, K. P. Roche, M. G. Samant, P. M. Rice, R. B. Beyers, R. E. Scheuerlein E. J. O'Sullivan, S. L. Brown, J. Bucchigano, D. W. Abraham, Yu Lu, M. Rooks, P. L. Trouilloud, R. A. Wanner, and W. J. Gallagher, “Exchange-biased magnetic tunnel junctions and application to nonvolatile magnetic random access memory ”, J. Appl. Phys., vol. 85, p. 5828, 1999
[81] R. Meservey and P.M. Tedrow, “Spin-polarized electron tunneling”, Phys. Rep., vol. 238, p. 173, 1994
[82] J. G. Simmons, “Generalized Thermal J-V Characteristic for the Electric Tunnel Effect”, J. Appl. Phys., vol. 35, p. 2655, 1964
[83] J. M. De Teresa, A. Barthélémy, A. Fert, J. P. Contour, R. Lyonnet, F. Montaigne, P. Seneor, and A. Vaurès, “Inverse Tunnel Magnetoresistance in Co/SrTiO3/La0.7Sr0.3MnO3: New Ideas on Spin-Polarized Tunneling”, Phys. Rev. Lett., vol. 82, p.4288, 1999
[84] Johnson M. and Silsbee R. H., “Interfacial charge-spin coupling: Injection and detection of spin magnetization in metals”, Phys. Rev. Lett., vol. 55, p. 1790, 1985
[85] Johnson M. and Silsbee R. H., “Coupling of electronic charge and spin at a ferromagnetic-paramagnetic metal interface”, Phys. Rev. B, vol. 37, p. 5312, 1988
[86] Johnson M. and Silsbee R. H., “Spin-injection experiment”, Phys. Rev. B, vol. 37, p. 5326, 1988
[87] Johnson M. and Silsbee R. H., “Electron spin injection and detection at a ferromagnetic-paramagnetic interface”, J. Appl. Phys., vol. 63, p.3934, 1988
[88] Johnson M. and Silsbee R. H., “Thermodynamic analysis of interfacial transport and of the thermomagnetoelectric system”, Phys. Rev. B, vol. 35, p. 4959, 1987
[89] Johnson M., “Spin accumulation in gold films”, Phys. Rev. Lett., vol. 70, p.2142, 1993
[90] Mark Johnson and R. H. Silsbee, “Thermodynamic analysis of interfacial transport and of the thermomagnetoelectric system”, Phys. Rev. B, vol. 35, p. 4959 (1987)
[91] Johnson M., “The all-metal spin transistor”, IEEE Spectrum, vol. 31, p. 47, 1994
[92] Johnson M., “Bipolar spin switch”, Science, vol. 260, p. 320 (1993)
[93] A. G. Aronov, Zh. Eksp. Teor. Fiz. Pisma Red. 24, 37 (1976); [JETP Lett. 24, 32–34 (1976)].
[94] Monsma D. J., Lodder J. C., Popma Th J. A. and Dieny B, “Perpendicular Hot Electron Spin-Valve Effect in a New Magnetic Field Sensor: The Spin-Valve Transistor”, Phys. Rev. Lett., vol. 74, p. 5260, 1995
[95] T. Shimatsu, R.H. Mollema, D.J. Monsma, E.G. Keim and J.C. Lodder, “Metal bonding during sputter film deposition”, J. Vac. Sci. Technol. Vol. A 16, p. 2125, 1998
[96] P.S. Anil Kumar, R. Jansen, O.M.J. van �t Erve, R. Vlutters, S.D. Kim and J.C. Lodder, “300 % magnetocurrent in a room temperature operating spin-valve transistor”, Physica C , vol. 350, p. 166, 2001.
[97] Lodder J. C., Monsma D. J., Vlutters R. and Shimatsu T., “The spin-valve transistor: technologies and progress”, J. Magn. Magn. Mater., vol. 119, p. 198, 1999
[98] D. J. Monsma, R. Vlutters, J. C. Lodder, “Room Temperature-Operating Spin-Valve Transistors Formed by Vacuum Bonding”, Science, vol. 281, p.407, 1998
[99] S.D. Kim, O.M.J. van 't Erve, R. Jansen, P.S. Anil Kumar, R. Vlutters and J.C. Lodder, “Fabrication technology for miniaturization of the spin-valve transistor”, Sensors and Actuators A vol. 91, p. 166, 2001.
[100] K. Dessein, P.S. Anil Kumar, L. Lagae, J. De Boeck, L. Delaey, G. Borghs, “Improvement of the transfer coefficient of GaAs/Si spin-valve transistors”, J. Magn. Magn. Mater., vol. 226-230, p. 2081, 2001.
[101] O.M.J. van 't Erve, R. Vlutters, P.S. Anil Kumar, S.D. Kim, F.M. Postma, R. Jansen and J.C. Lodder, “Transfer ratio of the spin-valve transistor”, Appl. Phys. Lett., vol. 80, p. 3787, 2002
[102] R.Jansen, H. Gokcan, O.M.J. van 't Erve, F.M. Postma and J.C. Lodder, “Spin-valve transistors with high magnetocurrent and 40 micro Ampere output current”, J. Appl. Phys., vol. 95, p. 6927, 2004
[103] K. Mizushima, T. Kinno, T. Yamauchi and K. Tanaka, ” Energy-Dependent Hot Electron Transport across a Spin-Valve”, IEEE Trans. Magn., vol. 33, p.3500, 1997
[104] Mizushima K, Kinno T, Yamauchi T and Inomata K 1996 US Patent No US5747859, Mizushima K, Kinno T, Yamauchi T and Inomata K 1998 US Patent No US5973334
[105] Sebastiaan van Dijken, Xin Jiang, and Stuart S. P. Parkin, “Spin-dependent hot electron transport in Ni81Fe19 and Co84Fe16 films on GaAs(001)”, Phys. Rev. B, vol. 66, p.094417, 2002
[106] R. Vlutters, O. M. J. van 't Erve, S. D. Kim, R. Jansen, and J. C. Lodder, “Interface, Volume, and Thermal Attenuation of Hot-Electron Spins in Ni80Fe20 and Co”, Phys. Rev. Lett., vol.88, p. 027202, 2002
[107] W. H. Rippard and R. A. Buhrman, “Spin-Dependent Hot Electron Transport in Co/Cu Thin Films”, Phys. Rev. Lett., vol. 84, p.971, 2000
[108] R. Sato and K. Mizushima, “Spin-valve transistor with an Fe/AuFe(001) base”, Appl. Phys. Lett., vol. 79, P. 1157, 2001
[109] Sebastiaan van Dijken, Xin Jiang, and Stuart S. P. Parkin, “Room temperature operation of a high output current magnetic tunnel transistor”, Appl. Phys. Lett., vol. 80, P. 3364, 2002
[110] Sebastiaan van Dijken, Xin Jiang, and Stuart S. P. Parkin, “ Giant magnetocurrent exceeding 3400% in magnetic tunnel transistors with spin-valve base layers”, Appl. Phys. Lett., vol. 83, P. 951, 2003
[111] Sebastiaan van Dijken, Xin Jiang, and Stuart S. P. Parkin, “ The influence of nonmagnetic seed layers on the magnetotransport properties of magnetic tunnel transistors with a silicon collector”, Appl. Phys. Lett., vol. 97, P. 043712-1, 2005
[112] T. Hirose, Y. Fujiwara, M. Jimbo, T. Kobayashi, S. Shiomi, “Magneto-current of magnetic tunnel transistors employing various Schottky junctions”, J. Magn. Magn. Mater., vol. 286, p. 124, 2005
[113] Takakazu Hirose, Yuji Fujiwara, Mutsuko Jimbo, Tadashi Kobayashi, and Shigeru Shiomi, “Transfer ratio of magnetic tunnel transistors with various Schottky materials”, Phys. Stat. Sol. (b), vol. 241, p. 1502, 2004
[114] John G. Simmons, “Generalized Formula for the Electric Tunnel Effect between Similar Electrodes Separated by a Thin Insulating Film”, J. Appl. Phys., vol. 34, p.1793 (1963)
[115] John G. Simmons, “Electric Tunnel Effect between Dissimilar Electrodes Separated by a Thin Insulating Film”, J. Appl. Phys., vol. 34, p.2581 (1963)
[116] Masakiyo Tsunoda, Kazuhiro Nishikawa, Satoshi Ogata, and Migaku Takahashi, “60% magnetoresistance at room temperature in Co–Fe/Al–O/Co–Fe tunnel junctions oxidized with Kr–O2 plasma”, Appl. Phys. Lett., vol. 80, p. 3135 (2002)

[117] K. Okada and T. Sekino, Impedance Measurement Handbook. (Agilent Technologies Co. Ltd)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top