跳到主要內容

臺灣博碩士論文加值系統

(44.200.94.150) 您好!臺灣時間:2024/10/05 20:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳宗達
論文名稱:加電場退火製程暨多層電極結構對鐵電薄膜微結構與電性之效應
指導教授:胡塵滌胡塵滌引用關係
指導教授(外文):Chen-Ti Hu
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:115
中文關鍵詞:鐵電薄膜加電場多層電極結構
外文關鍵詞:SBTPZT
相關次數:
  • 被引用被引用:0
  • 點閱點閱:282
  • 評分評分:
  • 下載下載:31
  • 收藏至我的研究室書目清單書目收藏:0
本論文共分為兩部分,第一部分為鐵電薄膜於結晶退火的過程中同時施加正或負電壓造成電場,分別對SBT及PZT鐵電薄膜所形成影響之探討。SBT的結果,退火施加電場能夠有效使SBT鐵電薄膜的(200)結晶比例增加,但是也會形成額外的二次相;顯微結構方面,發現有球狀晶粒轉變成棒狀晶粒的趨勢;由於觀察到SBT鐵電薄膜中對極化值最有貢獻的(200)結晶比例增加,因此各種退火施加電場的製程均能改善SBT鐵電薄膜的鐵電及介電性質。PZT的部結果,退火施加電場無法顯著改變其結晶方向,而(110)繞射峰的半高寬明顯的減小,印証顯微結構中退火施加電場能使晶粒有變大的趨勢;由鐵電及介電特性量測結果得知各種退火施加電場的製程均能改善PZT鐵電薄膜的鐵電及介電性質,其中除了殘餘極化值明顯的提升,且矯顽電場值也顯著的下降,推測可能是PZT鐵電薄膜中的鐵電域方向改變所致。
第二部份為多層電極結構對SBT鐵電薄膜影響之探討。於SIMS結果中可以明確顯示此一中間層的存在,但是在晶體繞射與顯微觀察中,發現此多層電極結構對SBT鐵電薄膜特性並未產生顯著的影響;於鐵電及介電性質量測中,觀察到Pt Plate此組試片之殘餘極化值及介電常數相較參考試片有明顯的提升,Pt Dot此組試片之表現則是和參考試片相差不多;漏電流的特性上,Pt Plate此組試片隨著厚度增加而觀察到漏電流增加,Pt Dot此組試片則是隨著厚度增加發現漏電流下降;於電場模擬結果中,發現Pt Plate此組試片的電場分佈遠較Pt Dot此組試片及參考試片還要廣。推測此電場分布的範圍以及漏電流的特性是造成殘餘極化值及介電常數有所改變的原因。
目錄

第一章 緒論……………………………………………….……………..1
1-1 前言…..………………………………………….……………….....1
1-2 鐵電記憶體材料的選擇…………………...…………………….....1
1-3 研究方向……………...………..…………..…………………….....2
第二章 文獻回顧………………………….……………………………..4
2-1 鐵電薄膜之簡介...………..……….…………...……………….…..4
2-1-1 鐵電薄膜之歷史演進…….……………...……………………4
2-1-2 鐵電材料之結構………………………………….…………...4
2-1-3 鐵電性…………………………………………………………5
2-1-4 鐵電材料之特徵………………………………………………7
2-1-5 鐵電薄膜的可靠度……………………………………………8
2-2 鐵電薄膜之製備…..……………………………………….….…....9
2-2-1 配方溶液的研製與調配…………………..…………………10
2-2-2 薄膜在基板的被覆………….…..……………………..….…11
2-2-3 低溫焦化處理…………….…………….…...……….………12
2-2-4 高溫結晶與緻密化處理.……………….…….…..…….……12
2-3 SBT鐵電薄膜之相變化………....………………………………..13
2-3-1 SBT鐵電薄膜之相變化…………………..…….……………13
2-3-2 PZT鐵電薄膜之相變化…………………..….….………....…14
2-5文獻中的相關研究..……………………………….………………18
2-5-1 鐵電薄膜文獻有關製程中同時施加電場的相關研究……..18
2-5-2 鐵電薄膜文獻中有關多層電極結構的已有研究….….……20

第三章 實驗程序………………………………………………………31
第一部分 施加電場退火效應實驗簡介……………………………....31
3-1 SBT薄膜..………..………………………………………………..31
3-1-1 基板之準備..……………………………………………..…..31
3-1-2 白金(Pt)底電極的製備……………………………….…..32
3-1-3 SBT薄膜的製備………..………………………………..…...32
3-1-3-1 SBT溶液之TG/DTA分析……………………….…...…32
3-1-3-2有機金屬裂解法製備SBT薄膜的流程……………...….33
3-2 PZT薄膜…………………………………………………….....…..34
3-2-1 Pt/Ti/SiO2/Si基板的準備..………………………………..…..34
3-2-2 PZT溶凝膠的製備……………………………………..……..34
3-1-3 PZT薄膜的旋鍍………..……………………………..……....36
3-3 SBT及PZT薄膜的結晶退火……………..………………………36
第二部分 多層電極層效應實驗簡介………………………..………...37
3-4 SBT薄膜..…………..……...…………………………………..…..37
3-4-1 基板之準備..………………..………………………………..37
3-4-2 白金底電極的製備…………………………………………..38
3-4-3 SBT薄膜的製備………..……………..……………………...38
3-4-3-1 有機金屬裂解法製備SBT薄膜的流程…………….….38
3-4-3-2 Pt中間層的製備……………………………..………...39
3-4-3-3 SBT多層結構的製備……………………………..…...39
3-4-4 SBT薄膜的結晶退火……..……………......…..……….....40
3-5 SBT及PZT鐵電薄膜性質之量測與分析……………………….40
3-5-1物性分析...………….…………………………………………40
3-5-2電性量測………………………………………………………41
3-5-3 表面顯微結構觀察…………………………………………..43
3-5-4 軟體模擬分析………………………………………………..43
第四章 實驗結果與討論……….……………………………………....50
第一部分 施加電場退火效應實驗簡介…………………………...…50
4-1 SBT鐵電薄膜施加電場退火效應…………………..……….……50
4-1-1 試片代號介紹……………………………………………..…50
4-1-2 XRD晶體結構分析…………………………………………..51
4-1-3 SEM微觀結構分析………………………………………..….54
4-1-4 鐵電特性量測結果……………………………………..……55
4-1-5 介電特性量測結果…………………………………….…….58
4-1-6 結論…………………………………………………………..59
4-2 PZT鐵電薄膜退火施加電場效應…………………………...……60
4-2-1 試片代號介紹……………………………………………..…60
4-2-2 XRD晶體結構分析…………………………………………..60
4-2-3 SEM顯微結構觀察………………………………...…………62
4-2-4 鐵電特性量測結果……………………………………..……64
4-2-5 介電特性量測結果………………………………….……….66
4-2-6 結論…………………………………………………………..66
第二部分 多層電極結構效應實驗簡介...............................................68
4-3 多層電極結構效應………………………………………………..68
4-3-1 試片代號介紹…………………………..……………………68
4-3-2 XRD晶體結構分析…………………………………………...70
4-3-3 SEM顯微結構觀察………………………………….………..71
4-3-4 SIMS縱深成分分析…………………………………………..71
4-3-5 鐵電特性量測結果…………………………….…………….72
4-3-6 介電特性量測結果……………………….………………….74
4-3-7 漏電流特性量測結果………………………………………..76
4-3-8 Tecplot軟體電場模擬結果…………………………..………77
4-3-8 結論……………………………………………………..……81
第五章 結論………………………………………………….………108
參考文獻………………………………..…………………………….110















圖目錄

圖2-1 鈣鈦礦結構…………………………………………………….22
圖2-2鈣鈦礦結構內的鐵電域圖,AA’為90度域壁,BB’為180度域壁……………………………………………………………….23
圖2-3 鐵電材料極化(P)與外加電場(E)的關係……………..……….24
圖2-4 浸鍍的過程……………………………………….……………25
圖2-5 旋鍍的過程………………………………………………….…25
圖 2-6 SBT內三種相之XRD繞射峰圖形…………………..…….....26
圖2-7 PZT之二元相圖……………......................................................27
圖2-8 鐵電薄膜用於DRAM之操作圖…………………..…………..28
圖2-9 一般線性介電值(a)與非線性介電值(b)…..……….………….28
圖2-10 FET-type鐵電記憶體操作原理示意圖………………....……29
圖2-11 1T-1C type 鐵電記憶體操作原理……………………............30
圖3-1 DTA原理示意圖..…….…………………………………..……44
圖3-2 SBT溶液之TG分析………..………………………………….45
圖3-3 SBT溶液之DTA分析..………………………………………..45
圖3-4 加電場實驗之退火裝置…...…………………………………..46
圖3-5 (a) Pt Double Plate結構之示意圖……………………………...47
(b) Pt Plate與Pt Dot結構之示意圖……….…………………..47
圖3-6 (a) SBT退火施加電場之量測示意圖…...…………..…….……48
(b) PZT退火施加電場之量測示意圖……...………………..….48
(c)多層電極結構之量測示意圖…………...……..…………….49
圖4-1文獻中加電場實驗的裝置示意圖……………………………..82
圖4-2 標準SBT晶體結構……………………………………...……..82
圖4-3 (a) SBT-F40m不同電壓條件之XRD結果…………..………...83
(b) SBT-R1sF40m不同電壓條件之XRD結果……….….…...83
圖4-4 (a) SBT-F40m不同電壓條件之二次相分析…….......................84
(b) SBT-R1sF40m不同電壓條件之二次相分析………..…….84
圖4-5 (a) SBT-F40m不同電壓條件之結晶優選方向分析…….......…85
(b) SBT-R1sF40m不同電壓條件之結晶優選方向分析…...…85
圖4-6 (a) SBT不同電壓條件之SEM表面形貌(低倍率)………...….86
(b) SBT不同電壓條件之SEM表面形貌(高倍率)……….….87
圖4-7 SBT-F40m不同電壓條件之鐵電特性……………..………......88
圖4-8 SBT-F40m不同電壓條件之鐵電特性(反接)……………...…..88
圖4-9 (a) SBT-F40m不同電壓條件之極化示意圖(正接)……......…..89
(b) SBT-F40m不同電壓條件之極化示意圖(反接)……..……89
圖4-10 SBT-F40m不同電壓條件之電容-電壓曲線……………...…..90
圖4-11 PZT-F30m不同電壓條件之XRD結果……………………….91
圖4-12 PZT-F30m不同電壓條件之XRD強度分析………………….91
圖4-13 (a) PZT-F30m不同電壓條件之SEM表面形貌(低倍率)…....92
(b) PZT-F30m不同電壓條件之SEM表面形貌(高倍率)…..92
圖4-14 PZT-F30m不同電壓條件之SEM剖面結構(高倍率)…….....93
圖4-15 (a) PZT-F30m不同電壓條件試片在不同驅動電壓下之電滯曲
線…………………..……………………………..………...94
(b) PZT-F30m不同電壓條件試片在不同驅動電壓下之飽和
趨勢……………..……………………………..…………...95
圖4-16 PZT-F30m不同電壓條件試片在驅動電壓為15V下之電滯曲
線……………………...………………………………………95
圖4-17 PZT-F30m不同電壓條件之電容-電壓曲線……….………....96
圖4-18 SBT多層電極Pt Plate各條件試片之晶體結構分析結果…...97
圖 4-19 SBT多層電極Pt Double Plate各條件試片之晶體結構分析結
果……………………………………………………………...97
圖4-20 (a) Pt Plate各條件試片之顯微結構分析(低倍率)…………...98
(b) Pt Plate各條件試片之顯微結構分析(高倍率)…………..99
圖4-21 Pt Plate各條件試片之SIMS縱深分析...................................100
圖4-22 (a) Pt Plate各條件試片之電滯曲線趨勢……………………100
(b) Pt Double Plate各條件試片之電滯曲線趨勢…………..101
(c) Pt Dot各條件試片之電滯曲線趨勢……………….……101
圖4-23 (a) Pt Plate各條件試片之電容-電壓曲線..............................102
(b) Pt Dot各條件試片之電容-電壓曲線…………………...102
圖4-24 (a) Pt Plate各條件試片介電常數(k)及介電損失(tand)對頻率(f)
的關係………………………………………………….....103
(b) Pt Dot各條件試片介電常數(k)及介電損失(tand)對頻率(f)
的關係………………………………………………….…104
圖4-25 (a) Pt Plate各條件試片漏電流(I)對電壓(V)的關係………..105
(b) Pt Dot各條件試片漏電流(I)對電壓(V)的關係………...105
圖4-26 (a) Tecplot軟體所模擬出各條件試片上電極中間位置之電場
分布趨勢………………………………………………….106
(b) Tecplot軟體所模擬出各條件試片上電極邊緣位置之電場
分布趨勢………………………………………………..107
參考文獻

1. Ching-Chich Leu, Chao-Hsin Chien, Ming-Jui Yang, Ming-Che Yang, Tiao-Yuan Huang, Hung-Tao Lin, and Chen-Ti Hu, “Effects of ultrathin tantalum seeding layers on sol-gel-derived SrBi2Ta2O9 thin films”, Appl. Phys. Lett. Vol. 80, pp. 4600-4602 (2002).
2. Woong-Chul Shin, Kyu-Jeong Choi, and Soon-Gil Yoon, “Low-temperature crystallization of SrBi2Ta2O9 thin films with Bi2O3 interfacial layers by liquid-delivery metalorganic chemical vapor deposition”, J. Mater. Res. Vol. 17, No. 1, pp. 26-30 (2002).
3. Yasuyukiito, Maho Ushikubo, Seiichi Yokoyama, Hironori Matsunaga, Tsutomu Atsuki, Tadashi Yonezawa, and Katsumi Ogi, “New low temperature processing of sol-gel SrBi2Ta2O9 thin films”, Integ. Ferro. Vol.14, pp. 123-131(1997).
4. Tze Chiun, Tingkai Li, Xubai Zhang, and Seshu B. Desu, “The effect of excess bismuth on the ferroelectric properties of SrBi2Ta2O9 thin film”, J. Mater. Res. Vol. 12, No. 6, pp. 1569-1575 (1997).
5. S. Bhattacharyya, Apurba Laha, and S. B. Krupanidhi, “Impact of Sr content on dielectric and electrical prop110110erties of pulsed laser ablated SrBi2Ta2O9 thin films”, J. Appl. Phys. Vol. 92, pp. 1056-1061 (2002).
6. R. Xu, M.R. Shen, S.B. Ge, Z.Q. Gan, W.W. Cao, “Dielectric enhancement of sol-gel derived BaTiO3/SrTiO3 multilayered thin films”, Thin Solid Films, Vol. 406, pp. 113-117 (2002).
7. Q. Wang, M.R. Shen, “Enhancement of remanent polarization in multilayered Bi4Ti3O12/(Bi3.25La0.75)Ti3O12 films obtained by chemical solution deposition”, Thin Solid Films, Vol. 473, pp. 74-79, (2005).
8. 陳瀅如, 添加微細粉對鈦酸鉛鍍膜製程與特性之研究, 清華大學碩士論文 (1998).
9. 鄭晃忠, 史德智, “極大型積體電路之鐵電材料”, 電子月刊, 第五卷第六期 (1999).
10. 陳銘森, ”鎳酸鑭電極對鋯鈦酸鉛溶凝膠製作與特性影響之研究”, 清華大學, 博士論文 (1996).
11. 錢維烈, 鐵電物理學, 科學出版社 (1996).
12. X. Xu, “Ferroelectric Materials and their application”, North Holland, Netherlands (1991).
13. Ismunandar and B. J. Kennedy, “Structure of ABi2Nb2O9(A=Sr, Ba): Refinement of Powder Neutron Diffraction Data”, J. Solid State Chem. Vol. 126, pp. 135-141 (1996).
14. A. Gonzalez, R. Jimenez, J. Mendiola, C. Alemany, and M. L. Calzada, “Ultrathin ferroelectric strontium bismuth tantalate films”, Appl. Phys. Lett. Vol. 81, pp. 2599-2601 (2002).
15. K. Amanuma, T. Hase, and Y. Miyasaka, “Preparation and ferroelectric properties of SrBi2Ta2O9 thin films”, Appl. Phys. Lett. Vol. 66, pp. 221-223 (1995).
16. Y. Shinada, A. Azuma, Keisaku, S. Chaya, N. Moriwaki, and T. Otsuki, “Retention Characteristics of a Ferroelectric Memory based on SrBi2(Ta,Nb)2O9”, Jpn. J. Appl. Phys. Vol. 36, pp. 5912-5916 (1997).
17. H. N. Al-Shareef, D. Dimos, W. L. Warren, and B. A. Tuttle, “Voltage offsets and imprint mechanism in SrBi2Ta2O9 thin films ”, J. Appl. Phys. Vol. 80, pp. 4573-4577 (1996).
18. 陳三元, 強介電薄膜之液相化學法製作, 工業材料, 108 (1995).
19. J. S. Lee, H. J. Kwon, S. J. Hyun, and T. W. Noh, “Structure characterization of the low-temperature phase in Sr-Bi-Ta-O films”, Appl. Phys. Lett. Vol. 74, pp. 2690-2692 (1999).
20. M. A. Rodriguez, T. J. Boyla, B. A. Hernandez, C. D. Buchheit, and M. O. Eatough, “Formation of SrBi2Ta2O9: Part1. Evidence of a bismuth-deficient pyrochlore phase”, J. Mater. Res. Vol. 11, pp. 2282-2287 (1996).
21. C.-H. Lu, B.-K. Fang, and C.-Y. Wen, “Structure Identification and Electrical Properties of the New Pyrochlore Phase in the Sr-Bi-Ta-Ti-O system”, Jpn. J. Appl. Vol. 39, pp. 5573-5576 (2000).
22. I. Koiwa, Y. Okada, J. Mita, A. Hashimoto, and Y. Sawada, “Role of Excess Bi in SrBi2Ta2O9 Thin Film Prepared Using Chemical Liquid Deposition and Sol-Gel Method”, Jpn. J. Appl. Phys. Vol.36, pp. 5904-5907 (1997).
23. T. Osaka, A. Sakakibara, T. Seki, S. Ono, I. Koiwa, and A. Hashimoto, “Phase Transition in Ferroelectric SrBi2Ta2O9 Thin Films with Change of Heat-treatment Temperature”, Jpn. J. Appl. Phys. Vol. 37, pp. 597-601 (1998).
24. T. J. Boyle, C. D. Buchheit, M. A. Rodriguez, H. N. Al-Shareef, and B. A. Hernandez, “Formation of SrBi2Ta2O9: Part 1. Synthesis and characterization of a novel sol-gel solution for production of ferroelectric SrBi2Ta2O9 thin film”, J. Mater. Res. Vol. 11, pp. 2274-2281 (1996).
25. 葉明華, ”脈衝雷射鍍膜法製備鈣鈦礦型鐵電薄膜之研究”, 清華大學, 博士論文, (1994).
26. 林家政, “添加劑(La,Mn,Nb)對溶凝膠PZT鐵電薄膜性質之影響”, 清華大學, 碩士論文, (1996).
27. S. Y. Wu, IEEE Trans. Electron Devices ED21 (1974).
28. 彭成鑑, “強介電陶瓷材料在動態隨機記憶體上的應用”, 工業材料, p107 (1995).
29. 呂正傑, 詹世雄, “鐵電記憶體簡介”, 毫微米通訊第五卷第四期.
30. W. S. Hu, Z.G. Liu, and D. Feng, “The role of an electric field applied during pulsed laser deposition of LiNbO3 and LiTaO3 on the film orientation”, J. Appl. Phys. Vol.80, pp. 7089-7093 (1996).
31. Ai-Dong Li, Hui-Qing Ling, Di Wu, Tao Yu, Zhi-Guo Liu, Nai-Ben Ming, “Characteristics of SrBi2Ta2O9 ferroelectric films in an in situ applied low electric field prepared by metalorganic decomposition”, Solid State Com., Vol.125, pp. 469-473 (2002).
32. Ai-Dong Li, Yi-Jun Wang, Su Huang, Jin-Bo Cheng, Di Wu, Tao Yu, Nai-Ben Ming, “Effect of in situ applied electric field on the growth of La2Ti2O7 thin films by chemical solution deposition”, J. Crys. Grow., Vol. 268, pp.198-203 (2004).
33. Yidong Xia, Jinbo Cheng, Bai Pan, Di Wu, Xiangkang Meng, and Zhiguo Liu, “Effects of applied electric field during postannealing on the tunable properties of (Ba,Sr)TiO3 thin films”, Appl. Phys. Lett., Vol 87, pp.052902-052904 (2005).
34. Hitoshi Tabata, Hidekazu Tanaka, and Tomoji Kawai, “Formation of artificial BaTiO3/SrTiO3 superlattices using pulsed laser deposition and their dielectric properties”, Appl. Phys. Lett., Vol. 65, pp. 1970-1972 (1994).
35. B. D. Qu, M. Evstigneev, D. J. Johnson, and R. H. Prince, “Dielectric properties of BaTiO3/SrTiO3 multilayered thin films prepared by pulsed laser deposition”, Appl. Phys. Lett., Vol. 72, pp.1394-1396 (1998).
36. D. O’Neil, R. M. Bowman, and J. M. Gregg, “Dielectric enhancement and Maxwell-Wagner effects in ferroelectric superlattice structures”, Appl. Phys. Lett., Vol. 77, pp.1520-1522 (2000).
37. G. Catalan, D. O’Neil, R. M. Bowman, and J. M. Gregg, “Relaxor features in ferroelectric superlattices: A Maxwell-Wagner approach”, Appl. Phys. Lett., Vol. 77, pp.3078-3080 (2000).
38. Toshihiko Tani, and David A. Payne, “Lead Oxide Coatings on Sol-Gel-Derived Lead Lanthanum Zirconium Titanate Thin Layers for Enhanced Crystallization into the Perovskite Structure”, J. Am. Cera. Soc., Vol. 77, pp. 1242-1248 (1994).
39. Radosveta D. Klissurska, Keith G. Brooks, Ian M. Reaney, Czezlaw Pzwlaczyk, Marija Kosec, and Nava Setter, “Effect of Nb Doping on the Microstructure of Sol-Gel-Derived PZT Thin Films”, J. Am. Cera. Soc., Vol. 78, pp. 1513-1520 (1995).
40. Xiumei Wu, Xiaomei Lu, Aiping Chen, Yuan Yin, Jun Ma, Wei Li, Yi
Kan, Dong Qian, and Jinsong Zhu, “Stress effects on ferroelectric and
fatigue properties of Nd- and La-doped Bi4Ti3O12 thin films”, Appl.
Phys. Lett., Vol. 86, pp. 092904 (2005).
41. 汪建民, “材料分析”, 中國材料學會, (1998).
42. M. L. Calzada, R. Jimenez, and A. Gonzalez, J. Garcia-Lopez, D. Leinen, E. Rodriguez-Castellon “Interfacial Phases and Electrical Characteristics of Ferroelectric Strontium Bismuth Tantalate Films on Pt/TiO2 and Ti/Pt/Ti Heterostructure Electrodes”, Chem. Mater., Vol. 17, pp. 1441-1449 (2005).
43. 許蘇文, “高頻基板用低介電材料-PPO樹脂之合成”, 成大化工所論文, (2003).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top