跳到主要內容

臺灣博碩士論文加值系統

(100.26.196.222) 您好!臺灣時間:2024/02/27 15:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:尤仁宏
研究生(外文):Jen-Hung Yu
論文名稱:在P2P網路架構下建構所認知的視覺化知識地圖
論文名稱(外文):Building a Visualized Cognitive Knowledge Map on P2P Networks
指導教授:林福仁林福仁引用關係
指導教授(外文):Fu-ren Lin
學位類別:碩士
校院名稱:國立清華大學
系所名稱:科技管理研究所
學門:商業及管理學門
學類:其他商業及管理學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:55
中文關鍵詞:SOM知識圖Peer-to-Peer(P2P)架構Egocentric SOM (ESOM)
外文關鍵詞:SOMKnowledge MapPeer-to-Peer(P2P) ArchitectureEgocentric SOM
相關次數:
  • 被引用被引用:1
  • 點閱點閱:216
  • 評分評分:
  • 下載下載:37
  • 收藏至我的研究室書目清單書目收藏:3
在知識管理的研究與實務領域中,知識地圖已經被廣泛的接受與應用。知識地圖提供了一組索引,讓組織中的知識工作者可以了解組織中知識的分佈與領域專家的所在。Peer-to-Peer(P2P)架構也因其具有獨立與自我管理的特性,而引起此領域學者研究之興趣。在P2P的架構下,知識工作者可以以更符合獨立自主的精神,進行知識的取得與傳播。但因為架構上的差別,例如缺乏集中式的儲存設備與統一的文件格式,傳統Client-Server架構下所發展出的知識地圖技術,並不適宜直接應用在P2P的架構之中。為了幫助個別的Peer可以在P2P環境中進行知識的探索,本研究提出了一套系統-「視覺化認知知識地圖整合系統」。此系統主要的目標在於,第一,有別於傳統的Tree結構,藉由使用SOM-like的類神經模式,提供了視覺化的二維矩形知識圖,第二,藉由本研究所提出的Egocentric SOM (ESOM),本系統可以保留特定Peer之知識架構,並且對外在的知識進行合併。換言之,本系統可以依照特定Peer 所給定的知識架構來歸納組織中其他Peer之知識。為了分析與驗證所提出的ESOM,本研究收集了工研院-產業經濟與趨勢研究中心所發表的研究報告摘要。並將每位研究員當作一個Peer,由其所撰寫的研究報告摘要中,建立出個別的知識地圖,進行合併測試。結果顯示,本研究所提出的ESOM的確有保存特定Peer知識架構之能力。
Knowledge Map has been widely used in the knowledge management area. Because of the independent and self-organization, Peer-to-Peer (P2P) architecture gets more attention from researchers of this area. However, traditional client-server based knowledge map technology may not suitable for applying to the P2P environment directly. For assisting individual peer to explore the external knowledge in a P2P environment, this study proposes a visualized cognitive knowledge map integration system. By using the SOM-like model, this system can provide a visualized knowledge map; moreover, by using the Egocentric SOM proposed in this study, this system will merge the external knowledge under the a focal peer’s knowledge structure. In order to understand the proposed integration method, we collected abstracts of research reports from the Industrial Economics and Knowledge (IEK) Center at the Industrial Technology Research Institute (ITRI), Taiwan, and assigned these abstracts to different peers according to their authors of abstracts. The results from the evaluation experiments reveal that ESOM is capable to keep the knowledge structure from the original knowledge map.
ABSTRACT I
中文摘要 II
致謝詞 III
TABLE OF CONTENTS IV
LIST OF FIGURES VI
LIST OF TABLES VII
CHAPTER 1 INTRODUCTION 1
1.1 RESEARCH BACKGROUND 1
1.2 RESEARCH MOTIVATION 2
1.3 RESEARCH OBJECTIVES 4
1.4 THESIS STRUCTURE 5
CHAPTER 2 LITERATURE REVIEW 6
2.1 SELF-ORGANIZING MAP (SOM) 6
2.1.1 SOM Algorithm 6
2.1.2 Growing Hierarchical Self-Organizing Map (GHSOM) 11
2.2 PEER-TO-PEER KNOWLEDGE MANAGEMENT (P2PKM) 13
CHAPTER 3 RESEARCH FRAMEWORK 16
3.1 ARCHITECTURE OF VISUALIZED COGNITIVE KNOWLEDGE MAP INTEGRATION SYSTEM 18
3.2 VISUALIZED KNOWLEDGE MAP INTEGRATION 19
CHAPTER 4 VISUALIZED INDIVIDUAL KNOWLEDGE MAP CREATION 23
4.1 KEYWORD EXTRACTION 24
4.2 TERM WEIGHTING 24
4.3 GHSOM CLUSTERING 25
CHAPTER 5 VISUALIZED COGNITIVE KNOWLEDGE MAP INTEGRATION 27
5.1 MAP SIMILARITY MEASUREMENT 29
5.2 TERM VECTOR ADJUSTMENT 29
5.3 LEARNING RATE ADJUSTMENT 29
5.3.1 Structure Stability Measurement 30
5.3.2 Fine tune of the learning rate 33
5.4 EGOCENTRIC SOM CLUSTERING 34
5.4.1 Concepts transition 34
5.4.2 Egocentric SOM Algorithm 35
CHAPTER 6 EVALUATION OF THE VISUALIZED COGNITIVE KNOWLEDGE MAP INTEGRATION 38
6.1 DOCUMENT SET 38
6.2 EVALUATION CRITERIA 39
6.3 EXPERIMENT DESIGN 40
6.4 EXPERIMENTAL RESULTS 41
6.4.1 The observation of knowledge distribution between global and peers 41
6.4.2 The evaluation of the ESOM 42
6.4.3 The evaluation of GHSOM initiated by the individual peer knowledge map 44
CHAPTER 7 CONCLUSIONS AND FUTURE RESEARCH 47
REFERENCES 50
APPENDIX A. EXAMPLE OF THE ABSTRACT OF A RESEARCH REPORT 52
APPENDIX B. A GLOBAL KNOWLEDGE MAP 53
APPENDIX C. EXAMPLE OF THE FOCAL PEER’S KNOWLEDGE MAP 54
APPENDIX D. EXAMPLE OF THE VISUALIZED COGNITIVE KNOWLEDGE MAP 55
Agrawal, R., Bayardo, R., and Srikant, R. (1999), “Athena: Mining-based Interactive Management of Text Databases,” Proceedings of the Seventh Conference on Extending Database Technology, July 1999.
Bonifacio, M., Cuel, R., Mameli, G. and Nori, M. (2002). A Peer-to-Peer Architecturefor Distributed Knowledge Management. In Proceedings of the 3rd international Symposium on Multi-Agent Systems, Large Complex Systems, and E-Business (MALCEB’2002).
Castano, S., Ferrara, A., Montanelli, S., and Zucchelli, D., (2003). HELIOS: a General Framework for Ontology-based Knowledge Sharing and Evolution in P2P systems. Database and Expert Systems Applications, pp.597 – 603.
Fritzke, B. (1995). A Growing Neural Gas Network Learns Topologies. Advances in Neural Information Processing Systems 7, Tesauro, G., Touretzky, D.S. and Leen, T.K., (eds.), MIT Press, Cambridge MA, pp. 625-632.
Fu-ren Lin, Chih-ming Hsueh. (2006), Knowledge map creation and maintenance for virtual communities of practice. Information Processing and Management, vol. 42, Iss. 2, pp.551~568
HUNG, Chih-Li (2004). An Adaptive SOM Model for Document Clustering Using Hybrid Neural Techniques. Unpublished doctoral dissertation, School of Computing and Technology University of Sunderland, Sunderland, United Kingdom.
Kohonen, T. (2001). Self-Organizing Maps, 3rd edition. Springer-Verlag, Berline, Heidelberg, New York.
Luhn, H.P. (1957). A statistical approach to the mechanized encoding and searching of literary information. IBM Journal of Research and Development, vol. 1, pp.309-317.
Mangisengi, O.; Essmayr, W. (2003). P2P knowledge management: an investigation of the technical architecture and main process. Database and Expert Systems Applications, pp.787 – 791.
Rauber, A., Merkl, D. and Dittenbach, M. (2002). The growing hierarchical self-organizing maps: exploratory analysis of high-dimensional data. IEEE Transactions on Neural networks, 2002, vol. 13, no.6, pp.1331-1341.
Salton, G.., Wong, A. and Yang, G.S. (1975). A vector space model for automatic indexing. Communication of the ACM, vol. 18, pp.613-20.
Sparck Jones, K. (1972). A statistical interpretation of term specificity and its application in retrieval. Journal of Documentation, vol.28, no.1 pp.11-21.
Wei., C.,-p. and Dong, Y.,-x. (2001), A Mining-based Category Evolution Approach to Managing Online Document Categories, Proceedings of the 34th Hawaii International Conference on System Sciences, 2001.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top