跳到主要內容

臺灣博碩士論文加值系統

(44.200.122.214) 您好!臺灣時間:2024/10/07 06:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:沈文銘
研究生(外文):Wen-Ming Shen
論文名稱:車輛裝置用小型摩擦式過載離合器之設計
論文名稱(外文):Design of the small size friction type overload clutches for vehicle devices
指導教授:方維倫
指導教授(外文):Weileun Fang
學位類別:博士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:119
中文關鍵詞:離合器摩擦係數彈簧內屐式掣子式曲型拱
外文關鍵詞:ClutchesCoefficient of frictionSpringInternal shoeDetentCurve arch
相關次數:
  • 被引用被引用:2
  • 點閱點閱:515
  • 評分評分:
  • 下載下載:125
  • 收藏至我的研究室書目清單書目收藏:1
交通運輸工具中,車輛所佔比重極高,尤其是供人乘坐汽車的設計,除了必需具備安全舒適的需求之外,也需兼顧到經濟性,自從1973年能源危機以來,油價飆漲各國政府莫不深思,從開源與節流兩方面去解決這個問題,某些替代性能源,雖可減緩一部分能源供應的困窘情形,迄目前為止還是以降低汽車油耗為最有效,而降低油耗的最佳辦法就是輕量化,欲達成輕量化的目標,可從改進材質和變更結構設計著手。組成汽車的零件甚多,其中被廣泛地應用作為扭矩過載的保護裝置,廣義地稱之為過載離合器,然而一般傳統的離合裝置,是由結構體、彈簧、摩擦塊等所組成,其結構複雜且體積龐大,欲達成輕、薄、短、小的目標誠屬不易,目前微小型化產品在日常生活中的應用已隨處可見,且已成必然之趨勢,針對微細元件的開發,必需有適合微小型化的製程的設計,因此簡化扭矩傳遞的離合器結構,減少零件數目,以利於微機電的加工製作。本研究提出四種不同結構,設計輕量小型的過載離合器,將零件數目減少以求減輕重量及加快生產速度,可應用於過負荷保護的場合,譬如汽車的電動窗、自動天線的控制,充分發揮簡易組裝的特色,達到保護的目的,更可進一步地發展微型化。探討各項有關參數改變時,對工件負荷形變與承受扭力的影響分析,並經實際產品驗證可行,且得到了理想的預期結果。
The vehicle is a very important tool for the human movement especially passenger car, its design requirements not only needs comfortable and safety but also considers economic. Since 1973 the energy crisis made a great impact on the world, all governments have attempted to solve this big problem by many ways, some one developed the newly energy like solar cell or fuel cell but the intelligent method is reduce the fuel consumption by lessening the weight of the car. The vehicle structure is very complicate so how to research the new materials and modify the original structure are more efficient to reach that target. The challenge is very difficult within narrow space of the car. Clutches are an old invention but still as common devices for transmitting power in mechanical systems. The general clutch application is to connect two shafts rotating at different speeds and bring the output shaft up to the speed of the input shaft smoothly, and designed to transmit a certain maximum torque like overload protection devices are designed to prevent damage of machinery or production line in the event of an overload, preventing costly repairs and reducing downtime. But all of above traditional designs of the clutch are consists of more components, which are difficult to miniature. So this article is proposed four types simple structure design which can reduce the weight of car and decay assembly time, furthermore, they can minimize the whole mechanism system much easier.
目錄
中文摘要………………………………………………..………..……. I
Abstract……………………………………….………..………..…… II
誌謝……….……………………………………………..……….….. III
目錄…..….……………………..………………………..………...… IV
圖目錄…...………………………………………………...………...VIII
表目錄..….…………………………………………………………. XIII

第一章 前言….............................................………………………….. 1
1-1 研究動機……………………………………….……………. 1
1-2 研究背景………………..………………………………….... 2
1-3全文研究架構…………………………….….………………. 5

第二章內屐摩擦式離合器................................................................... 14
2-1摩擦式離合器簡介…………………………………………. 14
2-2理論分析……………………………………………………. 16
2-3 實驗量測………………………………………………….... 19
2-4 小結……………………………………………………….... 20

第三章雙殼型摩擦式離合器………………………………………... 32
3-1 理論分析………………………………………………….... 32
3-2摩擦方面的考量……………………………………………. 35
3-3樣品製作與實驗……………………………………………. 36
3-4小結………………………….…………………………….... 38

第四章 掣子式離合器………………………………………………. 50
4-1掣子式離合器簡介 ………..……………………………… 50
4-2多段扭矩結構設計…………………………………………. 50
4-3初步的模擬與實驗…………………………………………. 53
4-4操作機制……………………………………………………. 53
4-5感測信號測量的架構………………………………………. 55
4-6扭矩實驗……………………………………………………. 55
4-7偵測電路的組成……………………………………………. 56
4-7-1閉合延遲…………………………………….………. 57
4-7-2放大器……………………………………….………. 57
4-7-3 比較器…………………..…………………..……..... 58
4-7-4 單擊……………………………..…….….…………. 58
4-7-5 馬達旋轉方向命令...……………….………………. 59
4-4小結..……………………………………………….……...... 59
第五章 曲形拱結構離合器………………………………………..... 76
5-1 理論分析…………………………………………………..... 76
5-2數值分析…………………………………………………….. 78
5-3實驗量測…………………………………………………….. 79
5-4 小結………………………………………………………..... 81

第六章 總結………………………………………………………..... 92

參考文獻…………………………..………………………………..... 95

附錄:不同結構離合裝置的微型化…………………………….….100
A-1可變扭矩離合器的構想…………………………………… 101
A-2摩擦力矩模型……………………………………………… 103
A-3設計與分析實驗量測……………………………………… 104
A-4元件製程與實驗…………………………………………… 105
A-4-1 元件製程…………………………………………..... 105
A-4-2 元件製程…………………………………………..... 107
A-5小結………………………………………………………… 108
圖目錄
圖1-1 汽車中使用離合器的組件例[3-4] .…………………………..… 9
圖1-2 摩擦式離合器 (a)軸向 (b)徑向 (c)錐狀離合器[7] ..…..……. 10
圖1-3 掣子式結構 (a)掣子式離合器 (b)扭力板手 (c)扭力起子
[8-10] ………….……………………………….………….….. 11
圖1-4 各種不同尺寸接觸表面的特徵關係,接觸表面積A與法向
負荷L [16] …………………….……………………………..... 12
圖1-5 摩擦的形態 (a)庫倫摩擦 (b)庫倫摩擦+粘滯摩擦(c)粘著+庫
倫摩擦+粘滯摩擦 (d)總合動態摩擦[17] ….…………..…….. 12
圖1-6 市售Y牌電動天線用離合器零件 ....………………………… 13
圖1-7 研究架構組織圖..…………………………………………….... 13
圖2-1 內屐摩擦式離合器結構圖..…………………………………… 22
圖2-2 橡膠和硬材質間的摩擦效應,W為法向負荷,F為切向負荷
[19] ..………….……………………………………………….... 22
圖2-3 各類型式的油溝 ……………………………………………… 23
圖2-4 內屐摩擦式離合器作用力示意圖..………………………….... 23
圖2-5 彈簧率與彈簧線徑、圈數關係圖 .…………………………..... 24
圖2-6 扭矩與摩擦係數和彈簧率關係圖 ………………………….... 24
圖2-7 (a)摩擦塊有限元素模型 (b)應變分佈圖(35.316 N) (c)應力分
佈圖(35.316 N) .….….……………………………………….…25

圖2-8 五種材質的摩擦塊與尺寸圖 ………………………………… 26
圖2-9 一模八穴的TPE摩擦塊成品照片………………………..….... 26
圖2-10摩擦塊與對應件的表面粗糙度 ……………………..………... 27
圖2-11 彈簧率理論值和實驗值的比較圖…………………………….. 27
圖2-12 內屐摩擦式離合器組成照片(a)零件分解 (b)成品組裝……... 28
圖2-13 組裝完成的摩擦塊形變位置照片.…..………………………... 29
圖2-14 扭矩測試裝置示意圖.…..……………………………..………. 29
圖2-15 扭矩衰減測試結果比較……...………………………………... 30
圖2-16 有油溝的摩擦塊……………...………………………………... 30
圖2-17 內屐摩擦式離合器應用在汽車自動天線的實例 …………… 31
圖3-1 單板摩擦式離合器..….………………………………….…….. 40
圖3-2 雙殼摩擦式離合器示意圖…...………………………….…….. 40
圖3-3 中空殼作用力示意圖...………………………………….…….. 41
圖3-4 殼簧在不同張角φ的受力形變關係圖………….……………. 42
圖3-5 雙殼盤簧及摩擦片尺寸圖...……………………………….….. 42
圖3-6 離合器扭矩和等效彈簧常數與摩擦係數的關係...…….…….. 43
圖3-7 平面推力軸承……...…………………………………….…….. 43
圖3-8 各種開孔的殼式彈簧照片(a)中心孔5~12 mm(b)中心孔11
mm,傳遞孔3、4、5、6 mm (c)中心孔11 mm長孔(d)中
心孔11 mm,傳遞孔5 mm 實驗後形變 ................................. 44

圖3-7 中空殼簧作用力與形變關係圖(中心孔5-12 mm)….….…….. 45

圖3-10 中空殼簧作用力與形變關係圖(中心孔11 mm),附帶扭力傳
遞孔3、4、5、6 mm及4x7 mm,7x4 mm長孔.......................... 45
圖3-11 三種材質的摩擦片.…..………………………………………... 46
圖3-12 雙殼盤簧及摩擦片的表面粗糙度 (a)不�袗�盤簧 (b)PU摩擦
片同心圓環向 (c) PU摩擦片徑向 ….…………………….... 46
圖3-13 油壓鉚合機台的示意圖..….…………………………………... 47
圖3-14 雙殼盤簧離合器組成照片..….……………………………....... 47
圖3-15 扭矩測試裝置圖...…………………………………………....... 48
圖3-16 扭矩衰減測試結果比較..…….……………………………....... 48
圖3-17 摩擦片在10 cycle/min 連續運轉5min後,凸出部的熔解情
形.................................................................................................. 49
圖4-1 掣子式徑向離合器……………………………………….……. 62
圖4-2 輪廓曲線幾何關係圖………………………………………...... 62
圖4-3 凹凸體接觸形狀 (a)滑順呈α角 (b)呈90°無法越過 .............. 63
圖4-4 凸塊作用力分析圖..……………………………………..…….. 64
圖4-5 掣子式徑向離合器扭矩與壓力角關係圖……………….……. 64
圖4-6 掣子式徑向離合器扭矩與旋轉半徑關係圖………………….. 65
圖4-7 掣子式徑向離合器扭矩與彈簧力關係圖…………………….. 65
圖4-8 掣子式徑向離合器扭矩與壓力角關係圖….…………………. 66
圖4-9 仿凸輪輪廓曲線………..…………….………………….…….. 66
圖4-10 (a)仿凸輪運動位移速度加速度跳度圖 (b)仿凸輪運動扭矩圖............................................................................................... 67

圖4-11 多段掣子式徑向離合器扭矩的構造 ..….……………………. 68
圖4-12 多段掣子式徑向離合器扭矩動作說明 .….………………….. 69
圖4-13 控制電路方塊圖及信號擷取波形...………..…………….…… 70
圖4-14 多段掣子式徑向離合器 (a)外觀 (b)內部構造………..…....... 71
圖4-15 多段掣子式徑向離合器上齒輪部分 (a)一對穴-TPE (b)一對
穴-POM (c)二對穴-POM (d)三對穴-POM……........................ 72

圖4-16 多段掣子式徑向離合器相對旋轉一圈時檢出電壓所對應之
扭矩 ......……………………............……………….….............. 72
圖4-17 控制電路圖及實物照片 .....…….……....….……………...…. 73
圖4-18 控制電路中 ○A ~ ○F 的檢出波形 .....………......…...………74
圖4-19 不同數量的貫穿孔在順/逆時針旋轉時所檢出的波形…......... 75
圖5-1 曲形拱離合器構想圖..……………...……………….……...…. 83
圖5-2 曲形拱離合器動作圖 (a)未受力時 (b)受力時接觸中 (c)受力
超過接觸點 .…..………………….…………….……………… 83
圖5-3 曲形拱離合器接觸時 (a)作用力關係圖 (b)局部放大圖….… 84
圖5-4 頃角變位法受力形變 (L=5.4 mm) ……....…………………… 85
圖5-5 曲形拱離合器尺寸圖 (a)凸塊齒輪 (b)曲型拱齒輪.…….…... 86
圖5-6 (a)曲形拱結構有限元素模型圖 (b)曲形拱結構受力位移分佈
圖...…….….…………………………………………………..... 87
圖5-7 曲形拱離合器元件照A為POM; B為POM+20%GF............... 88
圖5-8 曲形拱離合器齒輪元件進行受力測試圖....…………...….…...88
圖5-9 曲形拱結構受不同角度力之位移圖….....………..…...……….89
圖5-10 以三種不同方法求得之位移圖……….……………...….…..... 89
圖5-11 動作扭矩對應電壓測試 (a)各接觸位置扭矩 (b)凸塊旋轉一
圈之扭矩 . . .………………………….………..…….…………. 90
圖5-12 扭矩衰減測試…….…………..………………………………... 91
圖5-13 應用在汽車自動天線的實例照片….……….………………… 91
圖6-1 兩段式摩擦面的徑向離合器裝置示意圖 …………….……… 94
圖A-1 可變扭矩離合器概念圖 .……………………….…………… 111

圖A-2 可變扭矩離合器摩擦板在三個不同的位置
(a)接觸前 (b)接觸中 (c)接觸後……………….…….……… 111
圖A-3 摩擦扭矩系統示意圖……..………………………..…........... 112
圖A-4 粘滯摩擦與庫倫摩擦的系統方塊圖.………………..…........ 112
圖A-5 不同摩擦參數的模擬結果,在增益為3與10 及庫倫摩擦
的偏置參數從0 至3的角度和角速度對時間的變化情形
(a)-(d) B/J=1,(e)-(h) B/J=1000 ............................................. 113
圖A-6 MEMS可變扭矩離合器尺寸圖 ..……………….………... 114
圖A-7 當延伸臂兩端施加20 volts的電壓時產生熱形變的數值模
擬結果,TCE=2.33 e-6/°K,the pre-bent angle =6 deg (a)等
角視圖 (b)右側視圖 …..……………………..………........…115
圖A-8 測試元件製程.…………….………………………….……… 117
圖A-9 SEM照片 (a)可變扭矩離合器附熱驅動器 (b)摩擦板受力
旋轉後 (c)樞軸近攝 (d)曲形拱的接觸 …….………………118

圖A-10 當延伸臂兩端施加16 volts的電壓時產生熱形變的測量結
果 (a)通電時 (b)斷電後1分鐘 .………….………….……. 119



表目錄
表1-1 離合器的分類 …...…………………………..……………….…. 8
表1-2 依照運動區分的尺寸效果 .....…………………………….......... 8
表2-1 離合器及煞車常用的摩擦材料特性表.…..………………....... 21
表2-2 KYODO Multemp PS NO.2潤滑油脂特性表........……........... 21
表4-1 各種凸輪曲線特性表…………………….……………............. 61
表4-2 四種樣品的扭矩測試結果…………………..…………….…... 75
表4-3 電晶體 on/off 狀態控制馬達旋轉方向..………………….…. 75
表A-1 不同材料的表面粗糙度與硬度..………………………......... 110
表A-2 矽材料的摩擦係數與硬度..………………………….……… 110
表A-3 Physical properties of Polysilicon …………………….……… 114

表A-4 Simulation results of contact point deformation (a)TCE=2.33
e-6/°K (b) TCE=2.8 e-6/°K ..........…………………….……… 116
[1] J.J. Michalek, P.Y. Papalambros, and S.J. Skerlos, “A Study of Fuel Efficiency and
Emission Policy Impact on Optimal Vehicle Design Decisions,” Transactions of the ASME, J. Mechanical Design, Vol. 126, Nov. 2004, pp. 1062-1070.
[2] Denso Co., DENSO Technology 2000. http://www.denso.jp/ja/, pp. 1-38.
[3] 阮呂創義 編著,汽車原理,文京圖書,台北,1997, 第294-303頁。
[4] R. Shaver, Manual Transmission Clutch Systems AE-17. Warrendale, PA: SAE,1997, pp. 1-17.
[5] Vehicle Injuries.com., “Dangerous Power Windows in American Cars, Pickups and SUVs,” http://www.vehicle-injuries.com/window-accidents.htm, 2003.
[6] W.C. Orthwein, Clutches and Brakes. Marcel Dekker Inc, NEW YORK, NY: 1986, pp. 72-125.
[7] J.E. Shigley, C.R. Mischke, Standard Handbook of Machine Design. 2nd ed. McGraw Hill, NEW YORK, NY: 1996, pp. 30.4-30.24.
[8] Boston Gear., “Overload release clutches installation and maintenance instructions,” http://www.bostongear.com/, Boston Gear ORC series model F, pp. 1-7 (2003).
[9] R.E. Garwood, “Predetermind torque release wrench,” U.S. Patent 2601799, Jun. 18 (1951).
[10] R.J. Blattner, “Adjusting torque wrench,” U.S. Patent 4248107, Feb.3, 1981.
[11] O. Webb, “Clutches,” U.S. Patent 3680673, Aug. 1, 1972.
[12] L.W. Johnson, and H.E. Johnson, “Wrench construction,” U.S. Patent 2332972,
Oct. 26, 1943.
[13] J.W. Meese, “Torque wrench,” U.S. Patent 3958469, Mar. 25, 1976.
[14] Z. Rigbi, “An adjustable-torque slipping clutch,” Tribology Int. Vol. 30, No. 6, 1997, pp. 455-457.
[15] F.P. Bowden and D. Tabor, The Friction and Lubrication of Solids. Oxford, Clarendon, 1954, pp. 189-198; 327.
[16] J.F. Archard, “Single Contacts and Multiple Encounters,” J. Appl. Phys. 32, 1961, pp. 1420.
[17] C. Richard, M.R. Cutkosky, and K. MacLean, “Friction Identification for Haptic Display, DSC-7B-2, Proc. Of the 1999 ASME IMECE, Nashville, TN: Nov. 14-19, 1999.
[18] 藤田博之 著, 超微細機械開發のシステム, 工業調查會, 東京, 1992, pp. 86-87.
[19] J.A. Williams, Engineering Tribology. Oxford University, Oxford, NEW YORK, NY: 1994, pp.154.
[20] A.R. Savkoor, “Mechanics of Sliding Friction of Elastomers,” Wear, 113, 1986 pp. 37-60.
[21] 渡辺 茂,高分子材料試驗法.高分子講座,地人書館,牛込,東京.1964, pp. 135-139.
[22] Y.M. Huang and J.S. Shyr, “On Pressure Distributions of Drum Brakes,” Transactions of the ASME, J. Mechanical Design, Vol. 124, March 2002, pp. 115-120.
[23] V. L. Doughtie, A. Vallance, L. F. Kreisle, Design of Machine Members. 4th ed. McGraw Hill, NEW YORK, NY: 1964, pp. 342.
[24] 沃國緯、王元淳,彈性力學,交通大學出版社,上海,1998,第296-300頁。
[25] 薛景文,摩擦學及潤滑技術,兵器工業出版社,北京,1992,第 40-41頁。
[26] Advanced Elastomer Systems, Santoprene Rubber Physical Properties Guide, www.santoprene.com/elit/us/pd.fs/23physprop_us.pdf, 2002.
[27] N. R. Legge, G. Holden, H. E. Schroeder, Thermoplastic Elastomers. Hanser, NEW YORK, NY: 1987, pp.31-34.
[28] Kyodo Yushi, “Multemp PS,” http://www.kyodoyushi.co.jp/products/car.html, 2003.
[29] Y. Uchiyama, “The Effect of Environment on the Friction and Wear of Rubber,” Wear, 110,1986, pp. 369-378.
[30] P.E. Dupont and E.P. Dunlap, “Friction molding and control in boundary Labrication,” Proc. Of the 1993 American Control Conference, San Francisco, CA: June 1993, pp. 1910-1914.
[31] E. H. Baker, L. Kovalevsky, F. L. Rish, Structural Analysis of Shells. McGraw Hill, NEW YORK, NY: 1992, pp. 1-24.
[32] S. P. Timoshenko and S.Woinowsky-Kriegek, Theory of Plates and Shells. 2nd ed. McGraw Hill, NEW YORK, NY: 1957, pp. 429-449.
[33] 溫詩鑄,摩擦學原理,清華大學出版社,北京,1990,第 470-475頁。
[34] Z.Y. Yang, M.G.S. Naylor and D.A. Rigney, “ SLIDING WEAR OF 304 AND 310 STAINLESS STEELS,” Wear, 105 1985. pp 73-76.
[35] J.R. Fitch, “ The Buckling and Post-Buckling Behavior of Spherical Caps Under Concentrated Load,” Int. J. Solid Structures, 1968, Vol. 4. pp. 421-446.
[36] J.R. Fitch, “ Buckling and Post-buckling Behavior of Spherical Caps Under Axisymmertic Load,” AIAA Journal, 1970, pp686-693.
[37] P.W. Jensen, CAM DESIGN AND MANUFACTURE. 2nd ed. Marcel Dekker, Inc., NEW YORK, NY: 1987, pp. 19.
[38] 吳隆庸,洪嘉宏,張信良,盤形凸輪輪廓的向量式表示法,技術學刊,第十七卷,第一期,2002,第59-65頁。
[39] F.Y. Chen, Mechanics and Design of Cam Mechanisms. Pergamon, NEW YORK, NY: 1982, pp. 178-190.
[40] Polyplastics Co, Acetal Copolymer (Duracon) Design Data. Polyplastics Co, Tokyo, Japan. 1986.
[41] R.L. Norton, Design of Machinery. NEW YORK, NY: McGraw Hill, 1999, pp. 706-713.
[42] J. Jung, D.J. Ryu, K.S. Jeong, and K.H. Chang, “Development of a Clutch Disk Torque Sensor for an Automobile,” Transmission and Driveline System Symposium, SAE SP-1598, 2001, pp. 39-46.
[43] H.M. Berlin, Design of OP-AMP Circuits with Experiments. Howard W. SAMS & COMPANY, Indianapolis, Indiana, 1997, pp. 51-79.
[44] National Instruments Corporation, Using Quadrature Encoders with E Series DAQ Boards, Application Note 084, May 1996.
[45] Powerex Inc, CR02AM Lead-Mount Phase Control SCR 0.3 Amperes/400 Volts, Data Sheet, 2002.
[46] Fairchild Semiconducer Corporation, Designer’s Encyclopedia of one-shots, Application Note July 1984, Reversed Oct. 2002.
[47] Fairchild Semiconducer Corporation, MOC70P1/MOC70P2/MOC70P3 Phototransistor Optical Interrupter Switch. Data Sheet April 2001.
[48] M.G. Say and E.O. Taylor, Direct Current Machines. John Wiley & Sons, NEW YORK, NY: 1980, pp. 191.
[49] S.J. Campbell, Solid-State AC Motor Controls Selection and Application. Marcel Dekker, Inc., NEW YORK, NY: 1987, pp. 58.
[50] E. Rabinowicz, Friction and Wear of Materials. 2nd ed. John Wiley, NEW YORK, NY: 1995, pp.109-124.
[51] M. Hundal, “Design for Recycling and Remanufacturing,” International Design Conference-Design 2000, Dubrovnik, May 23-26, 2000. pp. 1-6.
[52] K.T. Ulrich and S.D. Eppinger, Product Design and Development. McGraw Hill, NEW YORK, NY: 1995, pp. 188-196.
[53] J.R. Rice and A.L. Ruina, “Stability of Steady Frictional Slipping,” Journal of Applied Mechanics, Vol. 50, June 1983, pp. 343-349.
[54] I.G. Goryacheva, P.T. Rajeev, and T.N. Farris, “Wear in Partial Slip Contact,” Transactions of the ASME, Vol. 123, Oct. 2001, pp. 848-856.
[55] R.G. Budynas, Advanced Strength and Applied Stress Analysis. 2nd ed. McGraw Hill, NEW YORK, NY: 1999, pp. 233-235.
[56] A.P. Boresi, R.J. Schmidt and O.M. Sidebottom, Advanced mechanics of materials. 5th ed. John Wiley, NEW YORK, NY: 1993, pp.363-379.
[57] Y.Y. Hsieh and S.T. Mau, Elementary Theory of Structures. 4 th ed. Prentice-Hall, NEW YORK, NY: 1998, pp. 227-230.
[58] Polyplastics Co., Acetal Copolymer DURACON M90-44, Data Sheet 2005.
[59] Polyplastics Co., Acetal Copolymer DURACON GR-20, Data Sheet 2005.
[60] W.A. de Morais, J.R.M. d’Almeida, and L.B. Godefroid, “Effect of the Fiber Reinforcement on the Low Energy Impact Behavior of Fabric Reinforced Resin Matrix Composite Materials,” J. Of the Braz. Soc. Of Mech. Sci. & Eng. Vol. XXV, No. 4, 2003, pp.325-328.
[61] H. Unal and A. Mimaroglu, “Influence of filler Addition on the Mechanical Properties of Nylon-6 Polymer,” Journal of Reinforced Plastics and Composites, Vol. 23, No. 5, 2004, pp. 461-469.
[62] Polyplastics Co., Product Introduction, http://www.polyplastics.com/en/duracon.php, 2005.
[63] M. Madou, Fundamentals of Microfabrication. CRC, Boca Raton, Florida: 1997,pp. 217-264.
[64] C.L. Kuo, S.T. Chen Y.J. Wu and T.T. Yen, "Research of 3D Micro-EDM Machining Technique ", Proceedings of SPIE 1997, pp157-162.
[65] M. J. Vasile, C.R. Friedrich, B. Kikkeri and R. McElhannon “Micrometer-Scale machining: Tool fabrication and initial results,” Precision Engineering, Vol.19.No. 2/3 Oct./Nov. 1996, pp.180-186.
[66] J.J. Sniegowski, "Chemical-mechanical polishing:enhancing the manufactur -ability of MEMS, " Precision Engineering,14-15 Oct. Austin, Texas, 1996, pp104-115.

[67] L.S. Fan, R.S. Muller, W. Yun, R.T. Howe and J. Huang, "Spiral Microstructures for the Measurement of Average Strain Gradients in Thin Films," IEEE Micromechanics and MEMS, Classic and Seminal Papers to 1990, pp509-513.
[68] W.C. Tang, T.H. Nguyen and R.T. Howe, "Laterally Driven Polysilicon Resonant Microstructures," IEEE Micromechanics and MEMS, Classic and Seminal Papers to 1990, pp187-193.
[69] L.S. Tavrow, S.F. Bart and J.H. Lang, "Operational Characteristics of Microfabricated Electric Motors," Technical Digest, IEEE Transducers ’91 International Conference on Solid-State Sensors and Actuators,1991, pp877-881.
[70] K. Deng, M. Mehregany and A. S. Dewa, "A Simple Fabrication Process for Side-Drive Micromotors," Technical Digest, IEEE Transducers ’93 International Conference on Solid-State Sensors and Actuators,1993, pp756-759.
[71] R. Legtenberg, E. Berenschot, M. Elwenspoek and J. H. Fluitman, "A Fabrication Process for Electrostatic Microactuators with Integrated Gear Linkages," Journal of Microelectromechanical Systems, VOL. 6, No.3, Sep. 1997, pp234-241.
[72] H. Han, “ A Micromechanical Fastening System and It’s Applications”, Phd. Thesis, Carnige Mellon University, 1992.
[73] H. Yamaguchi, T, Shinmura and T. Kaneko "Development of a new Internal Finishing Process Applying Process Applying Magnetic Abrasive Finishing by Use of Pole Rotation Syatem," Int. J. Japan Soc. Prec. Eng, Vol. 30, No.4 Dec. 1996, pp317-322.
[74] N.R. Tas, C. Gui and M. Elwenspoek, “Static friction in elastic adhesive MEMS contacts, models and experiment,” Proc. of IEEE MEMS 2000, Miyazaki, Japan, Jan. 2000, pp193-198.
[75] S. Suzuki, T. Matsuura, M. Uchizawa, S. Yura and H. Shibata, “ Friction and Wear Studies on Lubricants and Materials Applicable to MEMS,” Proc. of IEEE MEMS 1991, Nara, Japan, pp 143-147.
[76] 堀江三喜男, マイクロカ・トルクの測定・評価,精密工學會會誌, Vol. 63, No.3, 東京, 1997, pp. 337-340.
[77] M. Mehregany, S.D. Senturia, and J.H. Lang, “ Friction and Wear in Microfabricated Harmonic Side-drive Motors,” Micromechanics and MEMS NEW YORK, NY: IEEE Press, 1990, pp168-173.
[78] Q. Chen and G.P. Carman, “microscale tribology (friction) measurement and influence of crystal orientation and fabrication process,” Proc. of IEEE MEMS 2000, Miyazaki, Japan, Jan. 2000, pp657-661.
[79] T. Yi and C.J. Kim, “Measurement of mechanical properties for MEMS materials”, Meas. Sci. Technol. 10, 1999, pp706-716.
[80] K. Noguchi, H. Fujita and M. Suzuki, “The measurements of friction on micromechatoronics elements,” Proc. of IEEE MEMS 1991, Nara, Japan, pp 148-153.
[81] MEMS and Nanotechnology Clearinghouse, Materials Database Polysilicon film, http://www.memsnet.org/mems/, 2002.
[82] B. Bhushan, “Nanotribology and nanomechanics of MEMS device,” Proc. of IEEE MEMS 1996, San Diego, California, Feb. 1996, pp91-98.
[83] S.Sundararajan and B. Bhushan, “Static friction and surface roughness studies of surface micromachined electrostatic micromotors using an atomic force/friction force microscope,” J. Vac. Sci. Technol. A, Vol. 19, No. 4, 2001, pp1777-1785.
[84] K.J. Wahl, S.V. Stepnowski and W.N. Unertl, “Viscoelastic effects in nanometer-scale contacts under shear,” Tribology Letters, Vol 5, pp103-107, 1998.
[85] E.G. Papadopoulos and G.C. Chasparis, “Analysis and model-based control of servomechanisms with friction,” Proc. Of the International Conference on Intelligent Roberts and Systems (IROS 2002), EPFL Lausanne, Switzerland.
[86] R.G. Landers and A.G. Ulsoy, “Model base control, machining force control,” ASME J. of Dynamics System, Measurement, and Control, Vol.122, No.3, pp.521-527.
[87] P. Song, P. Krans, V. Kumar, and P. Dupont, “Analysis of Rigid-Body Dynamic Modelings for Simulation of System with Frictional Contacts,” Transactions of the ASME Vol. 68, Jan. 2001, pp. 118-128.
[88] C.M. Close, D.K. Frederick and J.C. Newell, Modeling and analysis of dynamic systems. 3rd. Ed., John Wiley & sons, New York, NY: 2002, pp. 103-126.
[89] Q.A. Huang and N.K.S. Lee, “Analysis and design of polysilicon thermal flexure actuator,” J. Micromech. Microeng. 9, 1999, pp64-77.
[90] SAS IP, Inc. Coupled- Field Analysis Guide. Release 5.3, 000647 1st Edition 1996, pp. 3-10~3-22.
[91] 黃瑞星、黃義佑、陳建亨,面型微機電共用晶片,使用說明手冊,http://nsc-cmems.nthu.edu.tw/index.php3?index=wafer/DOC/MPMC-3.pdf, 2000.
[92] MEMS Technology Applications Center, Three-Layer Polysilicon Surface Micromachining Process., http://mems.mcnc.org/smumps/Mumps.html, 2000.
[93] W. Fang and J.A. Wickert, “Comments on measuring thin-film stresses using bi-layer micromachined beams,” J. of Micromech. Microeng. 5, 1995, pp276-281.
[94] K.A. Shaw, Z.L. Zhang and N.C. MacDonald, “ SCREAM I: Single Mask, Single-Crystal Silicon, Reactive Ion Etching Process for Micro-Electro Mechanical Structures,” Sensor and Actuators A 40 (1994) pp210-213.
[95] J.D. Nicoud and O. Matthey, “ Developing intelligent micro-mechanisms,” 1997 INTERNATIONAL SYMPOSIUM ON MICROMECHATRONICS AND HUMAN SCIENCE, 1997, pp119-124.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top