跳到主要內容

臺灣博碩士論文加值系統

(44.200.94.150) 您好!臺灣時間:2024/10/05 20:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林宗賢
研究生(外文):Chung-Hsien Lin
論文名稱:微小型體聲波元件之設計與製造
論文名稱(外文):Design and Fabrication of Miniaturized Film Bulk Acoustic Devices
指導教授:方維倫
指導教授(外文):Weileun Fang
學位類別:博士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:178
中文關鍵詞:微機電體聲波薄膜型體聲波元件射頻
外文關鍵詞:MEMSBulk Acoustic WaveFBARRF
相關次數:
  • 被引用被引用:5
  • 點閱點閱:450
  • 評分評分:
  • 下載下載:95
  • 收藏至我的研究室書目清單書目收藏:1
體聲波元件同時具備低損耗、可承受高功率、且容易與積體電路整合之特點,在高頻通訊系統上為一個相當重要的元件。本論文分析薄膜型體聲波元件之需求規格,並於目前商用軟體ADS 中建立不同材料聲波傳導之模型,進而設計微機電體聲波共振器。同時也建立了一個背向晶片乾蝕刻的微加工製程,完成體聲波共振器的製造。本文也利用了高頻測試的方式,驗證了共振器設計結果,測得共振器的品質因子大於 1000。在應用方面,本研究設計並製造了不同頻段的高頻濾波器,同時驗證了微小型的封裝。最後,本研究也嘗試了體聲波元件的整合,包括整合被動元件以製造體聲波雙工器,與整合 Bi-CMOS MEMS 可變電容來達到體聲波元件微調共振頻率之功能。本論文除了改善現有微機電體聲波元件製程與封裝方法外,更利用這些結果驗證了本文所提的設計平台。此一系統化的設計平台與設計流程未來可以作為完成薄膜型體聲波元件的重要基礎。
Bulk Film bulk acoustic devices have the advantages of low loss, high power duriability, and high compatibility with integrated circuits. This study will improve the performance of the bulk acoustic devices using MEMS technology, moreover, this study also analyzes the requirement of film bulk acoustic devices and build acoustic models in commercial microwave software ADS. Resonators are designed by this model to meet required specifications. This study has developed a dry etching process to fabricate the resonator. The measured quality factor of this resonator is over 1000. Filters and its miniaturized packaging method are studied and verified. Moreover, this research also investigates on integration of bulk acoustic resonators with passive elements, such as inductors, capacitors, and Bi-CMOS MEMS varactors. In summary, this thesis not only improves the fabrication and packaging process of FBAR devices, but also provides a verified design plateform. This developed model and systematic design methodlogy are the foundation for future bulk acoustic devices.
摘要 2
目錄 6
圖目錄 8
表目錄 12
一、引言 13
1.1研究動機 13
1.2文獻回顧 15
1.2.1體聲波元件之原理與製程 16
1.2.2體聲波元件之設計模擬方式 18
1.2.3體聲波元件之封裝方式 20
1.2.4體聲波元件之應用 21
1.3研究目標 22
1.4 本文架構 23
二、微型體聲波元件之設計 27
2.1微型體聲波共振器之設計 27
2.1.1體聲波共振器之原理 28
2.1.2體聲波共振器之模型 32
2.1.3設計與模擬 37
2.2微型體聲波濾波器的設計 40
2.2.1微型體聲波濾波器的原理 41
2.2.2微型體聲波濾波器的設計 42
2.3 小結 46
三、微型體聲波共振器之製造 68
3.1利用背後濕蝕刻製程製作的薄膜型體聲波元件 68
3.1.1製程構想與製程流程 68
3.1.2製程結果、量測與分析 69
3.2利用低聲阻抗反射層製作的薄膜型體聲波元件 70
3.2.1製程構想與製程流程 71
3.2.2製程結果、量測與分析 73
3.3利用深蝕刻製作的薄膜型體聲波元件 73
3.3.1製程構想與製程流程 74
3.3.2製程結果、量測與分析 75
3.4 小結 77
四、微型體聲波濾波器之製造與封裝 94
4.1微型體聲波濾波器的製造 94
4.2微型體聲波元件之封裝 95
4.2.1體聲波元件封裝之方式 95
4.2.2 晶圓接合封裝之製程 98
4.2.3製程結果與分析 100
4.2.4高頻測試結果 102
4.3 小結 104
五、微型體聲波元件的整合 123
5.1 微型體聲波雙工器 123
5.1.1體聲波雙工器簡介 123
5.1.2體聲波雙工器之設計 124
5.1.3 體聲波雙工器製程流程與結果 128
5.1.4高頻測試與分析 129
5.2微型體聲波元件之微調 130
5.2.1 微型體聲波元件微調頻率之方法 130
5.2.2 整合體聲波元件與CMOS-MEMS可變電容 131
5.2.3 整合體聲波元件與CMOS-MEMS可變電容之分析 137
5.3 小結 138
六、結論 161
6.1 研究成果 161
6.2 未來工作 162
參考文獻 164
1. A.P. De Silva, C. Vaughan, D. Frear, L. Liu, S.M Kuo, J. Foerstner, J. Drye, J. Abrokwah, H. Hughes, C. Amrine, C. Butler, S. Markgraf, H. Denton, S. Springer, “Motorola MEMS switch technology for high frequency applications,” Microelectromechanical Systems Conference, Berkeley, CA, Augest, 2001, pp 22-24.
2. J.B. Muldavin and G.M. Rebeiz, “Inline capacitive and DC-contact MEMS shunt switches,” IEEE Microwave and Wireless Components Letters, 11, pp 334-336, 2001.
3. C.T.-C. Nguyen, “Micromechanical resonators for oscillators and filters,” Proceedings, IEEE Ultrasonics Symposium, Seattle, WA, November, 1995, pp 489-499.
4. L. Lin, C.T.-C. Nguyen, R.T Howe, and A.P. Pisano, “Microelcctromechanical filters for signal processing,” Proceedings, IEEE Micro Electro Mechanical Systems, Travemunde, Germany, February, 1992, pp 226-231.
5. A. Abbaspour-Tamijani, L. Dussopt, and G.M. Rebeiz, “Miniature and tunable filters using mems capacitors,” Microwave Theory and Techniques, 51, pp 1878-1885, 2003.
6. D. Feld, P. Bradley, B. Yu, and D. Lee, “Demonstration of a novel 2.0 mm x 1.6 mm x 0.9 mm PCS Tx filter with steep pass bnad rolloffs & high rejection,” IEEE Ultrasonics Symposium, August ,Montréal, Canada, 2004, pp 420-424.
7. J. Bouchaud and H. Wicht, “RF MEMS: status of the industry and roadmaps,” IEEE Radio Frequency Integrated Circuits Symposium, Long Beach, CA, June, 2005, pp 379-384.
8. Behzad Razavi, RF Microelectronics. Upper Saddle River, NJ: Prentice-Hall, 1998.
9. T.R Sliker and D.A. Roberts, “A thin-film CdS-Quartz composite resonator,” Journal of Applied Physics, 38, pp 2350-2358, 1967.
10. G.R. Kline and K.M. Lakin, “1.0GHz thin film bulk acoustic wave resonator on GaAs,” Applied Physic Letters, 43, pp 750-751, 1983.
11. R. Aigner, J. Ella, H.-J. Timme, L. Elbrecht, W. Nessler, and S. Marksteiner, “Advancement of MEMS into RF-filter applications,” International Electron Device Meeting Digest, 2002, pp 897-900.
12. R. Aigner, “RF-MEMS filters manufactured on silicon: key facts about bulk-acoustic-wave technology,” Digest, Silicon Monolithic Integrated Circuits in RF Systems, 2003, pp 157-161.
13. K.M. Lakin, “Thin film resonators and filters,” Proceedings, IEEE Ultrasonics Symposium, Caesars Tahoe, NV, October, 1999, pp 895-906.
14. S.V. Krishnaswamy, J. Rosenbaum, S. Horwitz, C. Vale, and R.A. Moore, “Film bulk acoustic wave resonator technology,” Proceedings, IEEE Ultrasonics symposium, Honolulu, HI, December, 1990, pp 529-536.
15. S.V. Krishnaswamy, J. F. Rosenbaum, S.S. Horwitz, and R.A. Moore, “Film bulk acoustic wave resonator and filter technology,” Digest, IEEE Microwave Symposium, Albuquerque, NM, June, 1992, pp 153-155.
16. H. Zhang and E.S. Kim, “Air-backed, Al/ZnO/Al film bulk acoustic resonator without any support layer,” IEEE international frequency control symposium and PDA exhibition, pp 20-26, 2002.
17. J.Y. Park, H.C. Lee, K.H. Lee, H.M. Lee, and Y.J. Ko, “Micromachined FBAR RF filters for advanced handset applications,” IEEE International conference on solid state sensors, actuators and microsystems, Boston, MA, June, 2003, pp 911-914.
18. J. Y. Park, H.M. Lee, H.C. Lee, K.H. Lee, Y.J. Ko, J.H. Shin, S.H. Moon, and J.U. Bu, “Comparison of micromachined fbar band pass filters with different structural geometry,” IEEE Microwave Symposium Digest, Philadelphia, PA, June, 2003, pp 2005-2008.
19. R. Ruby, P. Bradley, J.D. Larson III, and Y. Oshmyansky, “PCS 1900MHz duplexer using thin film bulk acoustic resonator (FBARS) ,” Electronics Letters, 35, pp 794-795, 1999.
20. J.D. Larson III, R. Ruby, P. Bradley, and Y. Oshmyansky, “A BAW antenna duplexer for the 1900MHz PCS band,” Proceedings, IEEE Ultrasonics Symposium, Caesars Tahoe, NV, October, 1999, pp 887-890.
21. M. Hara, J. Kuypers, T. Abe and M. Esashi, “Alminium nitride based thin film bulk acoustic resonator using germanium sacrificial layer etching,” Transducers’03, The 12th International Conference on Solid State Sensors, Actuators and Microsystems, June, 2003, pp 1780-1783.
22. H.H Kim, B.K. Ju, Y.H. Lee, S.H. Lee, J.K. Lee, and S.W. Kim, “A noble suspended type thin film resonator (STFR) using the SOI technology,” Sensors and Actuators, A89, pp 255-258, 2001.
23. S.H. Kim, J.S. Lee, H.C. Choi, and Y.H. Lee, “The fabrication of thin-film bulk acoustic wave resonators employing a ZnO/Si composite diaphragm structure using porous silicon layer etching,” IEEE Electron Device Letters, 20, pp 113-115, 1999.
24. K.M. Lakin, K.T, McCarron, and R.E. Rose, “Solidly mounted resonators and filters,” Proceedings, IEEE Ultrasonics Symposium, Seattle, WA, November, 1995, pp 905-908.
25. G. Yoon and J.D. Park, “Fabrication of ZnO-based film bulk acoustic resonator devices using W/SiO2 multilayer reflector,” Electronics Letters, 36, pp 1435-1437, 2000.
26. R.Lanz and P. Muralt, “Bandpass filters for 8 GHz using solidly mounted bulk acoustic wave resonators,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 52, pp 936-946, 2005.
27. R. Aigner, “MEMS in RF-filter applications: Thin film bulk acoustic-wave technology,” The 13th international conference on Solid-State Sensors, Actuators and Microsystems, Seoul, Korea, June, 2005, pp 5-8.
28. K.T. McCarron, G.R. Kline, J.T. Martin and K.M. Lakin, “Growth and characterization of aluminium nitride thin films for piezoelectric devices,” Proceedings, IEEE Ultrasonics Symposium,Chicago, IL, October, 1988, pp 673-676.
29. M.-A. Dubois, P. Muralt, and V. Plessky, “BAW resonators based on aluminum nitride thin films,” IEEE Ultrasonics Symposium, Vaesars Tahoe, NV, October, 1999, pp 907-910.
30. H.P. Lobl, M. Klee, R. Milsom, R. Dekker, C. Metzmacher, W. Brand, and P. Lok, “Materials for bulk acoustic wave (BAW) resonators and filters,” Journal of the European Ceramic Society, 21, pp 2633-2640, 2001.
31. H.P. Loebl, M. Klee, C. Metzmacher, W. Brand, R. Milsom and P. Lok, “Piezoelectric thin AlN films for bulk acoustic wave (BAW) resonators,” Materials Chemistry and Physics, 79, pp 143-146, 2003.
32. M. Ylilammi, J. Ella, M. Partanen, and J. Kaitila, “Thin film bulk acoustic wave filter,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 49, pp 535-539, 2002.
33. G. Yoon, J.-D. Park, and H.-D. Park, “Characterization of ZnO-based FBAR devices for RF applications,” Proceedings, International Conference on Microwave and Millimeter Wave Technology, Beijing, China, September, 2000, pp 192-195.
34. P. Osbond, C.M. Beck, C.J. Brierley, M.R. Cox, S.P. Marsh, and N.M. Shorrocks, “The influence of ZnO and electrode thickness on the performance of thin film bulk acoustic wave resonators,” Proceedings, IEEE Ultrasonics Symposium, Caesars Tahoe, NV, October, 1999, pp 911-914.
35. W. Pang, H. Zhang, J.J. Kim, H. Yu, and E.S. Kim, “High-tone bulk acoustic resonator integrated with surface micromachined FBAR filter on a single chip,” Transducers05, The 13th International Conference on Solid-State Sensors, Actuators and Microsystems, Seoul, Korea, June, 2005, pp 2057-2060.
36. P.B. Kirby, Q.X. Su, E. Komuro, Q, Zhang, M. Imura, R.W. Whatmore, “PZT thin film bulk acoustic wave resonators and filters,” Proceedings, IEEE International Frequency Control Symposium and PDA Exhibition, Seattle, WA, June, 2001, pp 687-694.
37. Z. Awang, R.E. Miles, S.J. Milne, and Y.L. Tu, “Sol-gel derived bulk acoustic wave devices for cellular communication applications,” IEEE International Conference on Semiconductor electronics, Penang, Malaysia, November, 1996, pp 238-243.
38. J.D. Larson, S.R. Gilbert, and B. Xu, “PZT material properties at UHF and microwave frequencies derived from FBAR measurements,” IEEE International Ultrasonics, Ferroelectrics, and Frequency Control Joint 50th Anniversary Conference, Montréal, Canada, August, 2004, pp 173-177.
39. C. Zinck, E. Defay, A. Volatier, G. Caruyer, and L. Figuiere, “Design, Integration and Characterization of PZT tunable FBAR,” IEEE International Ultrasonics, Ferroelectrics, and Frequency Control Joint 50th Anniversary Conference, Montréal, Canada, August, 2004, pp 29-32.
40. K. Misu, T. Nagatsuka, S. Wadaka, C. Maeda, and A. Yamada, “Film bulk acoustic wave filters using lead titanate on silicon substrate,” IEEE Ultrasonic Symposium, Sendai, Japan, October, 1998, pp 1091-1094.
41. H. Zhang, Z. Wang, and S.-Y. Zhang, “Electrode effects on frequency spectra and electromechanical coupling factors of HBAR,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 52, pp 1020-1025, 2005.
42. T. Yokoyama, T. Nishihara, S. Taniguchi, M. Iwaki, Y. Satoh, M. Ueda, and T. Miyashita, “New electrode material for low-loss and high-Q FBAR filters,” IEEE International Ultrasonics, Ferroelectrics, and Frequency Control Joint 50th Anniversary Conference, Montréal, Canada, August, 2004, pp 429-432.
43. S. Salgar, G. Kim, D.-H. Han, and B. Kim, “Modeling and simulation of the thin film bulk acoustic resonator,” IEEE International Frequency Control Symposium and PDA Exhibition, pp 40-44, 2002.
44. K.M. Lakin, “Modeling of thin film resonators and filters,” Digest, IEEE Microwave Symposium, Albuquerque, NM, June, 1992, pp 149-152.
45. J.D. Larson III, P.D. Bradley, S. Wartenberg, and R.C. Ruby, “Modified Butterworth-Van Dyke circuit for FBAR resonators and automated measurement system,” IEEE Ultrasonics Symposium, San Juna, Puerto Rico, December, 2000, pp 863-868.
46. K.M. Lakin, G.R. Kline, and K.T. McCarron, “Thin film bulk acoustic wave filters for GPS,” Proceedings, IEEE Ultrasonics Symposium, Tucson, AZ, December, 1992, pp 471-476.
47. O. Holmgren, K. Kokonen, T. Mattila, V. Kaajakari, A. Oja, J. Kiihamaki, J.V. Knuuttila, and M.M. Salomaa, “Imaging of in- and out-of-plane vibrations in micromechanical resonator,” Electronics Letters, 41, pp 121-122, 2005.
48. J.D. Larson, R.C. Ruby, and K.L. Telschow, “Observation of flexural modes in FBAR resonators at MHz frequencies,” Proceedings, 2003 IEEE Ultrasonics symposium, Honolulu, HI, October, 2003, pp 88-91.
49. X. Liu, A.S. Paulo, M. Park, and J. Bokor, “Characterization of acoustic vibration modes at GHz frequencies in bulk acoustic wave resonators by combination of scanning laser interferometry and scanning acoustic force microscopy,” IEEE International Conference on Micro Electro Mechanical Systems, Miami Beach, FL, Jan, 2005, pp 175-178.
50. A. Reinhardt, S. Ballandras, and V. Laude, “Simulation of transverse effects in FBAR devices,” IEEE Microwave Symposium Digest, June, Long Beach, CA, 2005, pp 237-240.
51. T. Makkonen, A. Holappa, J. Ella, and M.M. Salomea, “Finite element simulations of thin-film composite BAW resonators,” IEEE Transactions on Ultrasonics, Ferroelectrics and Frquency Control, 48, pp 1241-1258, 2001.
52. J.H. Jung, Y.H. Lee, J.H. Lee, and H.C. Choi, “Vibration mode analysis of RF film bulk acoustic wave resonator using finite element method,” IEEE ultrasonics symposium, Atlanta, GA, October, 2001, pp 847-850.
53. J. E. A. Southin and R.W. Whatmore, “Finite element modelling of nanostructured piezoelectric resonators (NAPIREs),” IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 51, pp 654-662, 2004.
54. J.-H. Lee, C.-M. Yao, K.-Y. Tzeng, C.-W. Cheng, and Y.-C. Shih, “Optimization of frame-like film bulk acoustic resonators for suppression of spurious lateral modes using finite element method,” IEEE Ultrasonics Symposium, August ,Montréal, Canada, 2004, pp 278-281.
55. R.-Y. Fillit, B. Ivira, J. Boussey, R. Fortunier, and P. Ancey, “Structural and thermal investigation for FBAR reliability in wireless applications,” IEEE International Reliability Physics Symposium, April ,San Jose, CA, 2005, pp 342-346.
56. M. Farina and T. Rozzi, “Electromagnetic modeling of thin-film bulk acoustic resonators,” IEEE Transactions on Microwave Theory and Techniques, 52, pp 2496-2502, 2004.
57. D. Neculoiu, G. Konstantinidis, K. Mutamba, A. Takacs, D. Vasilache, C. Sydlo, T. Kostopoulos, A. Stavrinidis, and A. Muller, “Electromagnetic modeling of micromachined GaN thin films for FBAR applications,” Semiconductor Conference, Sinaia, Romania, October, 2005, pp 119-122.
58. H. Reich and V. Grosser, “Overview and development trends in the field of MEMS packaging,” 14th IEEE International Conference on Micro Electro Mechanical Systems, Interlaken Switzerland, Jan, 2001, pp 1-5.
59. Y.-M. Chiang, M. Bachman, and G. P. Li, “A wafer-level microcap array to enable high-yield microsystem packaging,” IEEE Transactions on Advanced Packaging, 27, pp 490-496, 2004.
60. T.J. Harpster and K. Najafi, “Field-assisted bonding of glass to Si-Au eutectic solder for packaging applications,” IEEE The Sixteenth Annual International Conference on Micro Electro Mechanical Systems, Kyoto Japan, Jan, 2003 pp 630-633.
61. Y.T. Cheng, L. Lin, and K. Najafi, “Localized silicon fusion and eutectic bonding for MEMS fabrication and packaging,” Journal of microelectromechanical systems, 9, pp. 3-7, 2000.
62. J. Oberhammer, F. Nikalus, and G. Stemme, “Selective wafer-level adhesive bonding with benzocyclobutene for fabrication of cavities,“ Sensors and Actuators A, 105, pp 297-304, 2003.
63. F. Niklaus, P. Enoksson, E. Kalvesten, and G. Stemme, “Low-temperature full wafer adhesive bonding,” Journal of micromechanics and microengineering, 11, pp. 100-107, 2001.
64. A. Margomenos and L.P.B. Katehi, “Fabrication and accelerated hermeticity testing of an on-wafer package for RF MEMS,” IEEE Transactions on Microwave Theory and Techniques, 52, pp 626-636, 2004.
65. D. Feld and P. Bradley, “A wafer level encapsulated FBAR chip molded into a 2.0mm x 1.6mm plastic package for use as a PCS full band Tx filter,” Proceedings, 2003 IEEE Ultrasonics symposium, Honolulu, HI, October, 2003, pp 1798-1801. vol2.
66. K. Wang, M. Frank, P. Bradley, R. Ruby, and W. Mueller, “FBAR Rx filters for handset front-end modules with wafer-level packaging,” Proceedings, 2003 IEEE Ultrasonics symposium, Honolulu, HI, October, 2003, pp 162-165. vol1.
67. M. Franosch, K.-G. Oppermann, A. Meches, W. Nessler, and R. Aigner, “Wafer-level-package for bulk acoustic wave (BAW) filters,“ Microwave Symposium Digest, 2004 IEEE MTT-S International, Fort Worth, TX, June, 2004, pp 493-496. vol2.
68. S. Marksteiner, M. Handtmann, H.-J. Timme, R. Aigner, R. Welzer, J. Portmann, and U. Bauernschmitt, “A miniature BAW duplexer using flip-chip on LTCC,” Proceedings, 2003 IEEE Ultrasonics symposium, Honolulu, HI, October, 2003, pp 1794-1797. vol2.
69. H.P. Loebl, C. Metzmacher, R.F. Milsom, R. Mauczok, W. Brand, P. Lok, A. Tuinhout, and F. Fanhelmont, “Narrow band bulk acoustic wave filters,” IEEE International Ultrasonics, Ferroelectrics, and Frequency Control Joint 50th Anniversary Conference, Montréal, Canada, August, 2004, pp 411-415.
70. K. Wang, P. Bradley, and M. Gat, “Micromachined bulk acoustical-wave RF filters,” International Conference on Solid-State and Integrated-Circuit Technology, Bejing, China, October, 2005, pp 1687-1690.
71. G.G. Fattinger, R. Aigner, and W. Nessler, “Coupled bulk acoustic wave resonator filters: key technology for single-to-balanced RF filters,” IEEE Microwave Symposium Digest, June, Fort Worth, TX, 2004, pp 927-929.
72. F.M. Pitschi, J.E. Kiwitt, B. Bader, and K.C. Wagner, “On the design of an FBAR PCS Duplexer in LTCC chip-sized package,” IEEE International Ultrasonics, Ferroelectrics, and Frequency Control Joint 50th Anniversary Conference, Montréal, Canada, August, 2004, pp 1525-1528.
73. S.G. Burns, P.H. Thompson, and G.R. Kline, “Non-linear modeling and performance of oscillators using thin-film bulk-acoustic wave devices,” Frequency Control Symposium, Baltimore, MD, Jun, 1988, pp 272-275.
74. S.G. Burns and P.H. Thompson, “Design, analysis, and performance of UHF oscillators using thin-film resonator-based devices as the feedback element,” Proceedings of the 32nd Midwest symposium on circuits and systems, Champaign, IL, August, 1999, pp 1005-1010.
75. A.P.S. Khanna, E. Gane, and T. Chong, “A 2GHz voltage tunable FBAR oscillator,” IEEE Microwave Symposium Digest, Philadelphia, PA, June, 2003, pp 717-720.
76. Y.H. Chee, A.M. Niknejad, and J. Rabaey, “A sub-100uW, 1.9-GHz CMOS oscillator using FBAR resonator,” IEEE Radio Frequency Integrated Circuits Symposium, Long Beach, CA, June, 2005, pp 123-126.
77. H. Zhang and E.S. Kim, “Vapor and liquid mass sensing by micromachined acoustic resonator,” Micro Electro Mechanical Systems, Kyoto, Japan, 2003, pp 470-473.
78. G.J. Gouws, R.C. Holt, and J.Zhen, “Measurement of the equivalent circuit parameters of chemical interface layers on bulk acoustic wave resonators,” IEEE International Ultrasonics, Ferroelectrics, and Frequency Control Joint 50th Anniversary Conference, Montréal, Canada, August, 2004, pp 311-316.
79. K. Lakin, and J. Belsick, “Integration of thin film resonator devices onto SiGe substrates,” Digest of Silicon Monolithic Integrated Circuits in RF Systems, Ann Arbor, MI, September, 2001, pp 37-41.
80. D. Penunuri and K.M. Lakin, “RF filter design using LTCC and thin film BAW technology,” IEEE ultrasonics symposium, Atlanta, GA, October, 2001, pp 273-278.
81. H. Morkner, R. Ruby, M. Frank, and D. Figueredo, “An integrated FBAR filter and PHEMT switched-AMP for wireless applications,” Digest, IEEE Microwave Symposium, Anaheim, CA, June, 1999, pp 1393-1396.
82. M.-A. Dubols, C. Billard, C. Muller, G. Parat, and P. Vincent, “Integration of high-Q BAW resonators and filters above IC,” IEEE International solid-state circuits conference, San Francisco, CA, February, 2005, pp 392-393.
83. L. Elbrecht, R. Aigner, C.-I. Lin, and H.-J. Timme, “Integration of bulk acoustic wave filters: concepts and trends,” IEEE Microwave Symposium Digest, June, Fort Worth, TX, 2004, pp 395-398.
84. R. Ruby, P. Bradley, D. Clark, D. Feld, T. Jamneala, and K. Wang, “Acoustic FBAR for filters, duplexers and front end modules,” IEEE Microwave Symposium Digest, June, Fort Worth, TX, 2004, pp 931-933.
85. R.S. Ketcham, G.R. Kline, and K.M. Lakin, “Performance of TFR filters under elevated power conditions,” Proceedings, 42nd Annual Frequency Control Symposium, Baltimore, MD, June, 1988, pp 106-111.
86. J.D. Larson III, R.C. Ruby, P.D. Bradley, J. Wen, S.-L. Kok, and A. Chien, ”Power handling and temperature coefficient studies in FBAR duplexers for the 1900 MHz PCS band,” IEEE Ultrasonics Symposium, San Juna, Puerto Rico, December, 2000, pp 869-874.
87. K.M. Lakin, K.T. McCarron, J.F. McDonald, and J. Belsick, “Temperature coefficient and ageing of BAW composite materials,” Proceedings, IEEE International Frequency Control Symposium and PDA Exhibition, Seattle, WA, June, 2001, pp 605-608.
88. J.D. Larson and Y. Oshmyansky, “ Measurement of effective Kt2, Q, Rp, Rs vs. temperature for Mo/AlN FBAR resonators,” IEEE Ultrasonics Symposium, 2002, pp 939-943.
89. J.F. Rosenbaum, Bulk Acoustic Wave Theory and Devices. Norwood, MA: Artech House, 1988.
90. B.A. Auld, Acoustic fields and waves in solids. New York, NY: John Wiley and Sons, 1973.
91. H.P. Lobl, M. Klee, R. Milsom, R. Dekker, C. Metzmacher, W. Brand, and P. Lok, “Materials for bulk acoustic wave (BAW) resonators and filters,” Journal of the European Ceramic Society, 21, pp. 2633-2640, 2001.
92. K. Tsubouchi, "Zero-temperature-coefficient SAW devices on AlN epitaxial films." IEEE Transactions on Sonics and Ultrasonics, SU-32(5), pp. 634-644, 1985.
93. J. Lutsky, “A sealed cavity thin-film acoustic resonator process for RF bandpass filters.” Ph.D. diss., Massachusetts Institute of Technology, 1997.
94. MEMS and Nanotechnology Clearinghouse, http://www.memsnet.org
95. Dupont Polyimide Film, http://www.doupont.com/
96. Dow CYCLOTENE Properties, http://www.dow.com/cyclotene/
97. R. Ruby, “Duplexers,” Wireless Communications Alliance Meeting, San Jose, CA, May, 2005.
98. S. J. Parisi, “180∘Lumped Element Hybrid,” IEEE MTT-S Digest, pp.1243-1246, 1989.
99. L. Dussopt and G. M. Rebeiz, “An X- to Ku-Band 3-Bit Digital MEMS Varactor,” IEEE Microwave and Wireless Componenets Letters, 13, pp.361-363, 2003.
100. D. Peroulis, and L.P.B. Katehi, “Electrostatically-Tunable Analog RF MEMS Varactors with Measured Capacitance Range of 300%,” IEEE Microwave Symposium Digest, Philadelphia, PA, June, 2003, pp 1793-1796.
101. D.T. McCormick, N.C. Tien, N. MacDonalad, R. Matthews, and A. Hibbs, “Ultra-wide tuning range silicon MEMS capacitors on glass with Tera-ohm isolation and low parasitics,” Transducers’05, The 13th International Conference on Solid State Sensors, Actuators and Microsystems, June, 2005, pp 1075-1079
102. A. Oz and G.K. Fedder, “RF CMOS-MEMS capacitor having large tuning range,” Transducers’03, The 12th International Conference on Solid State Sensors, Actuators and Microsystems, June, 2003, pp 851-854.
103. A. Oz and G.K. Fedder, “CMOS-compatible RF-MEMS tunable capacitors,” RFIC 2003, Radio Frequency Integrated Circuits Symposium, June, 2003, pp 611-614.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top