|
Bibliography [1] Osher S. and Shu C. W., High-order essentially non-oscillatory schemes for Hamilton-Jacobi equations. SIAM J Numer Anal 1991; 28:907. [2] Jiang G. S. and Shu C. W., Effcient implementation of weighted ENO schemes. J. Comput. Phys. 1996; 126:202. [3] Lin C. H. and Lin C. A., Simple high-order bounded convection scheme to model discontinuities. AIAA J. 1997; 35:563. [4] Jordan S. A., A large-eddysimulation methodology in generalized curvilinear coordinates. J. Comput. Phys. 1999; 148:322-40. [5] Mahesh K., Constantinescu G., and Moin P., Large-eddy simulation of gas- turbine combustors. CTR Annual Research Briefs, NASA Ames/Stanford University, 2000. [6] Vasilyev O. V., Lund T. S., and Moin P., A general class of commutative filters for LES in complex geometries. J. Comput. Phys. 1998; 146:82-104 [7] Brackbill J. U. and Saltzman J. S., Adaptive zoning for singular problems in two dimensions. J. Comput. Phys. 1982; 46:342. [8] Dvinsky A. S., Adaptive grid generation from Harmonic maps on Riemannian- Manifolds. J. Comput. Phys. 1991; 95:450. [9] Li R., Tang T., and Zhang P. W., Moving mesh methods in multiple dimensions based on harmonic maps. J. Comput. Phys. 2001; 170:562. [10] Di Y, Li R, Tang T, Zhang P. W., Moving mesh finite element methods for the incompressible NavierVStokes equations. SIAM J. Sci. Comput. 2005; 26:1036. [11] Ye T., Mittal R., Udaykumar H. S., and Shyy W., An accurate Cartesian grid method for viscous incompressible flows with complex immersed boundaries. J. Comput. Phys. 1999; 156:209. [12] LeVeque R. J. and Li Z., The immersed interface method for elliptic equations with discontinuous coeffcients and singular sources. SIAM J. Numer. Anal. 1994; 31:1019. [13] LeVeque R. J. and Li Z., Immersed interface method for Stokes flowwith elastic boundaries or surface tension, SIAM J. Sci. Comput. 1997; 18:709. [14] Li Z., The Immersed Interface MethodXA Numerical Approach for Partial Differential Equations with Interfaces, Ph.D. thesis (University of Washington, 1994). [15] Li Z., A note on immersed interface methods for three dimensional elliptic equations, Computers Math. Appl. 1996; 31:9. [16] Calhoun D., A Cartesian grid method for solving the two-dimensional streamfunction-vorticity equations in irregular regions. J. Comput. Phys. 2002; 176:231. [17] Li Z. and Wang C., A fast finite di®erence method for solving Navier-Stokes equations of irregular domains. Commun. Math. Sci. 2003; 1:180. [18] Li Z. and Lai M.-C., The immersed interface method for the NavierVStokes equations with singular forces. J. Comput. Phys. 2001; 171:822. Bibliography 62 [19] Le D. V., Khoo B. C., and Peraire J., An immersed interface method for the incompressible NavierVStokes equations in irregular domains. Proceedings of the third MIT conference on computational fluid and solid mechanics, Elsevier Science; 2005. [20] Xu S. and Wang Z. J., An immersed interface method for simulating the interaction of a fluid with moving boundaries. preprint; 2005. [21] Li Z., An overview of the immersed interface method and its applications. Taiwanese J. Math. 2003; 7:1. [22] Peskin C. S., Flow patterns around heart valves: a numerical method. J. Comput. Phys. 1972; 10:252. [23] Peskin C. S., The fluid dynamics of heart valves: Experimental, theoritiacal and computational methods. Annual Review of Fluid Mechanics 1982; 14:235 [24] Beyer R. P. and LeVeque R. L., Analysis of a one-dimensional model for the immersed boundary method. SIAM J. Numer. Anal. 1992; 29:332. [25] Lai M.-C. and Peskin C. S. An immersed boundary method with formal second order accuracy and reduced numerical viscosity. J. Comput. Phys. 2000; 160:705. [26] Goldstein D., Handler R., and Sirovich L., Modeling a no-slip flow with an external force field. J. Comput. Phys. 1993; 105:354. [27] Goldstein D., Hadler R., and Sirovich L., Direct numerical simulation of turbulent flow over a modeled riblet covered surface. J. Fluid Mech. 1995; 302:333. [28] Saiki E. M. and Biringen S. Numerical simulation of a cylinder in uniform flow: application of a virtual boundary method. J. Comp. Phys. 1996; 123:450. [29] Lima E Silva A. L. F., Silveira-Neto A., and Damasceno J. J. R., Numerical simulation of two-dimensional flows over a circular cylinder using the immersed boundary method. J. Comput. Phys. 2003; 189:351. [30] Mittal R. and Iaccarino G., Immersed boundary methods. Annual Review of Fluid Mechanics 2005; 37:239-261. [31] Mohd-Yusof J. Combined immersed boundary/B-Spline method for simulations of flows in complex geometries in complex geometries CTR annual research briefs. NASA Ames/Stanford University;1997. [32] Verzicco, Mohd-Yosuf J., Orlandi P., and Haworth. D., LES in complex geometries using boundary body forces. AIAA J. 2000; 38:427-433. [33] Fadlun E. A. , Verzicco R., Orlandi P., and Mohd-Yusof J. Combined immersed- boundary methods for three dimensional complex flow simulations. J. Comput. Phys. 2000; 161:30. [34] Elias Balaras, Modeling complex boundaries using an external force field on fixed Cartesian grids in large-eddy simulations, Computer and Fluids 2004; 33:375-404 [35] Kim J., Kim D., and Choi H. An immersed-boundary finite-volume method for simulations of flow in complex geometries. J. Comput. Phys. 2001; 171:132 [36] Tseng Y.-H. and Ferziger J. H. A ghost-cell immersed boundary method for flow in complex geometry. J. Comput. Phys. 2003; 192:593. [37] Majumdar S., Iaccarino G., and Durbin P., RANS solvers with adaptive structured boundary non-conforming grids, in: Annual Research Briefs, NASA Ames Research Center/Stanford University Center for Turbulence Research, Stanford, CA, 2001, pp. 353V366. Bibliography 64 [38] Tyagi M. and Acharya S., Large eddy simulation of turbulent flows in complex and moving rigid geometries using the immersed boundary method. J. Numer. Meth. Fluids 2005; 48:691-722 [39] Su S. W., Lai M.-C., and Lin C. A., A simple immersed boundary technique for simulating complex flows with rigid boundary. Computer and Fluids in press. [40] Harlow F. H. and Welsh J. E., Numerical calculation of time-dependent viscous incompressible flow of fluid with a free surface. Phys. Fluids, 1965; 8:2181-2189 [41] Haecheon Choi and Parviz Moin, Effects of the Computational Time Step on Numerical Solutions of turbulent flow, J. Comput. Phys. 1993; 113:1 [42] Chorine A. J., Numeriacal solution of the Navier-stokes equations, Math. Comp. 1968; 22:745 [43] Van den Vorst H. A. and Sonneveld P., CGSTAB, a more smoothly converging variant of CGS, Technical Report 90-50, Delft University of Technology (1990). [44] Ghia U., Ghia K. N., and Shin C. T., High-Re solutions for incompressible flow using the Navier-Stokes Equations and a multi-grid method, J. Comput. Phys. 1982; 48:387 [45] Fornberg B., A numerical study of steady viscous flow past a circular cylinder. J. Fluid Mech. 1980; 98:819 [46] Ingham D. B and Tang T., A numerical investigation into the steady flow past a rotating circular cylinder at low and intermediate Reynolds numbers. J. Comput. Phys. 1990; 87:91 [47] Williamson C. H. K., Vortex dynamics in the cylinder wake, Ann. Ver. Fluid Mech. 1996; 28:477 [48] Triton D. J., Experiments on the flow past a circular cylinder at low Reynolds number, J. Fluid Mech. 1959; 6:547
|