跳到主要內容

臺灣博碩士論文加值系統

(44.201.97.138) 您好!臺灣時間:2024/09/16 02:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張育維
研究生(外文):Yu-Wei Chang
論文名稱:沉浸邊界法於複雜邊界流場之應用分析
論文名稱(外文):Implementation of the immersed boundary method for flow in complex geometry
指導教授:林昭安
指導教授(外文):Chao-An Lin
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:65
中文關鍵詞:沉浸邊界法複雜邊界速度修正修正點
外文關鍵詞:Immersed boundary methodfluid-solid interactionNavier-Stokes equationsdirect-forcingflow past a cylinder
相關次數:
  • 被引用被引用:2
  • 點閱點閱:506
  • 評分評分:
  • 下載下載:43
  • 收藏至我的研究室書目清單書目收藏:0
Abstract
A new immersed-boundary method for simulating flows over or inside complex geometries is presented. The present scheme is based on the direct forcing concept, where the boundary condition can be implemented on Eulerian grid directly. The
numerical integration is based on a second-order fractional step method under the staggered grid spatial framework. Based on the direct momentum forcing on the Eulerian grids, a new force formulation imposes the desired velocity distribution V which ensures the satisfaction of the no-slip boundary condition in the intermediate time step without adopting the Lagrangian markers. This forcing procedure involves an interpolation scheme since the immersed boundary in general does not coincide with the grid point. There are three different interpolation schemes adopted. Numerical experiments show that the stability limit is not altered by the proposed techniques and the second order or close to second accurate solutions are obtained. Four different test problems are simulated using present technique(rotating ring flow, rotating concentric rings, lid-driven cavity and flows over a stationary cylinder), and the results are compared with previous experimental and numerical results. The numerical evidences show the accuracy and capability of the proposed methods
for solving complex geometry flow problems. For the IBM schemes adopted, extrapolation scheme A produces relatively better results, while the difference of the interpolation schemes B and C is marginal. However, the advantage of the
interpolation scheme is that its capability to represent the flowfield accurately on both sides of the interface boundary. Therefore, for this kind of applications, scheme
C is preferred.
Contents
1 Introduction 1
1.1 Introduction . . . . . . . . . . . . . . . . .. . . . . . 1
1.2 Paper Survey . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Objective and Motivations . . . . . . . . . . . . . . . . . . . . . . . 8
2 The methodology of immersed boundary technique 9
2.1 Mathematical Formulations . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Governing Equations . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Numerical Algorithm . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.1 Discretization of the Transport Equations . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.2 Final Discretised Form of The Governing Equation . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4 The forcing strategies . . . . . . . . . . . . . . . . . . . . . . . 17
2.4.1 Identi‾cation of forcing points . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4.2 Evaluation for the forcing points . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.5 The full solution procedure . . . . . . . . . . . . . . . . . . . . . . . 23
2.6 Figures . . . . . . . . . . . . . . . . . . . . . . . . 24
3 Numerical Results 31
3.1 Flow induced by a rotating ring . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.1.1 Steady state for a rotating ring . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.1.2 Unsteady state for a rotating ring . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2 Flow induced by two concentric rotating rings . . . . . . . . . . . . . . . . . . . . . . . . . .34

3.3 Lid-driven cavity . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.4 The flow past a cylinder . . . . . . . . . . . . . . . . . . . . . . . . 36
4 Conclusion and future work 40
4.1 The conclusion . . . . . . . . . . . . . . . . . . . . . . . 40
4.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5 Figures & Tables 42
Bibliography
[1] Osher S. and Shu C. W., High-order essentially non-oscillatory schemes for
Hamilton-Jacobi equations. SIAM J Numer Anal 1991; 28:907.
[2] Jiang G. S. and Shu C. W., Effcient implementation of weighted ENO schemes.
J. Comput. Phys. 1996; 126:202.
[3] Lin C. H. and Lin C. A., Simple high-order bounded convection scheme to
model discontinuities. AIAA J. 1997; 35:563.
[4] Jordan S. A., A large-eddysimulation methodology in generalized curvilinear
coordinates. J. Comput. Phys. 1999; 148:322-40.
[5] Mahesh K., Constantinescu G., and Moin P., Large-eddy simulation of gas-
turbine combustors. CTR Annual Research Briefs, NASA Ames/Stanford
University, 2000.
[6] Vasilyev O. V., Lund T. S., and Moin P., A general class of commutative filters
for LES in complex geometries. J. Comput. Phys. 1998; 146:82-104
[7] Brackbill J. U. and Saltzman J. S., Adaptive zoning for singular problems in
two dimensions. J. Comput. Phys. 1982; 46:342.
[8] Dvinsky A. S., Adaptive grid generation from Harmonic maps on Riemannian-
Manifolds. J. Comput. Phys. 1991; 95:450.
[9] Li R., Tang T., and Zhang P. W., Moving mesh methods in multiple dimensions
based on harmonic maps. J. Comput. Phys. 2001; 170:562.
[10] Di Y, Li R, Tang T, Zhang P. W., Moving mesh finite element methods for the
incompressible NavierVStokes equations. SIAM J. Sci. Comput. 2005; 26:1036.
[11] Ye T., Mittal R., Udaykumar H. S., and Shyy W., An accurate Cartesian grid
method for viscous incompressible flows with complex immersed boundaries.
J. Comput. Phys. 1999; 156:209.
[12] LeVeque R. J. and Li Z., The immersed interface method for elliptic equations
with discontinuous coeffcients and singular sources. SIAM J. Numer. Anal.
1994; 31:1019.
[13] LeVeque R. J. and Li Z., Immersed interface method for Stokes flowwith elastic
boundaries or surface tension, SIAM J. Sci. Comput. 1997; 18:709.
[14] Li Z., The Immersed Interface MethodXA Numerical Approach for Partial
Differential Equations with Interfaces, Ph.D. thesis (University of Washington,
1994).
[15] Li Z., A note on immersed interface methods for three dimensional elliptic
equations, Computers Math. Appl. 1996; 31:9.
[16] Calhoun D., A Cartesian grid method for solving the two-dimensional
streamfunction-vorticity equations in irregular regions. J. Comput. Phys. 2002;
176:231.
[17] Li Z. and Wang C., A fast finite di®erence method for solving Navier-Stokes
equations of irregular domains. Commun. Math. Sci. 2003; 1:180.
[18] Li Z. and Lai M.-C., The immersed interface method for the NavierVStokes
equations with singular forces. J. Comput. Phys. 2001; 171:822.
Bibliography 62
[19] Le D. V., Khoo B. C., and Peraire J., An immersed interface method for the
incompressible NavierVStokes equations in irregular domains. Proceedings of
the third MIT conference on computational fluid and solid mechanics, Elsevier
Science; 2005.
[20] Xu S. and Wang Z. J., An immersed interface method for simulating the
interaction of a fluid with moving boundaries. preprint; 2005.
[21] Li Z., An overview of the immersed interface method and its applications.
Taiwanese J. Math. 2003; 7:1.
[22] Peskin C. S., Flow patterns around heart valves: a numerical method. J.
Comput. Phys. 1972; 10:252.
[23] Peskin C. S., The fluid dynamics of heart valves: Experimental, theoritiacal
and computational methods. Annual Review of Fluid Mechanics 1982; 14:235
[24] Beyer R. P. and LeVeque R. L., Analysis of a one-dimensional model for the
immersed boundary method. SIAM J. Numer. Anal. 1992; 29:332.
[25] Lai M.-C. and Peskin C. S. An immersed boundary method with formal
second order accuracy and reduced numerical viscosity. J. Comput. Phys. 2000;
160:705.
[26] Goldstein D., Handler R., and Sirovich L., Modeling a no-slip flow with an
external force field. J. Comput. Phys. 1993; 105:354.
[27] Goldstein D., Hadler R., and Sirovich L., Direct numerical simulation of
turbulent flow over a modeled riblet covered surface. J. Fluid Mech. 1995;
302:333.
[28] Saiki E. M. and Biringen S. Numerical simulation of a cylinder in uniform flow:
application of a virtual boundary method. J. Comp. Phys. 1996; 123:450.
[29] Lima E Silva A. L. F., Silveira-Neto A., and Damasceno J. J. R., Numerical
simulation of two-dimensional flows over a circular cylinder using the immersed
boundary method. J. Comput. Phys. 2003; 189:351.
[30] Mittal R. and Iaccarino G., Immersed boundary methods. Annual Review of
Fluid Mechanics 2005; 37:239-261.
[31] Mohd-Yusof J. Combined immersed boundary/B-Spline method for simulations
of flows in complex geometries in complex geometries CTR annual research
briefs. NASA Ames/Stanford University;1997.
[32] Verzicco, Mohd-Yosuf J., Orlandi P., and Haworth. D., LES in complex
geometries using boundary body forces. AIAA J. 2000; 38:427-433.
[33] Fadlun E. A. , Verzicco R., Orlandi P., and Mohd-Yusof J. Combined immersed-
boundary methods for three dimensional complex flow simulations. J. Comput.
Phys. 2000; 161:30.
[34] Elias Balaras, Modeling complex boundaries using an external force field on
fixed Cartesian grids in large-eddy simulations, Computer and Fluids 2004;
33:375-404
[35] Kim J., Kim D., and Choi H. An immersed-boundary finite-volume method
for simulations of flow in complex geometries. J. Comput. Phys. 2001; 171:132
[36] Tseng Y.-H. and Ferziger J. H. A ghost-cell immersed boundary method for
flow in complex geometry. J. Comput. Phys. 2003; 192:593.
[37] Majumdar S., Iaccarino G., and Durbin P., RANS solvers with adaptive
structured boundary non-conforming grids, in: Annual Research Briefs, NASA
Ames Research Center/Stanford University Center for Turbulence Research,
Stanford, CA, 2001, pp. 353V366.
Bibliography 64
[38] Tyagi M. and Acharya S., Large eddy simulation of turbulent flows in complex
and moving rigid geometries using the immersed boundary method. J. Numer.
Meth. Fluids 2005; 48:691-722
[39] Su S. W., Lai M.-C., and Lin C. A., A simple immersed boundary technique for
simulating complex flows with rigid boundary. Computer and Fluids in press.
[40] Harlow F. H. and Welsh J. E., Numerical calculation of time-dependent viscous
incompressible flow of fluid with a free surface. Phys. Fluids, 1965; 8:2181-2189
[41] Haecheon Choi and Parviz Moin, Effects of the Computational Time Step on
Numerical Solutions of turbulent flow, J. Comput. Phys. 1993; 113:1
[42] Chorine A. J., Numeriacal solution of the Navier-stokes equations, Math.
Comp. 1968; 22:745
[43] Van den Vorst H. A. and Sonneveld P., CGSTAB, a more smoothly converging
variant of CGS, Technical Report 90-50, Delft University of Technology (1990).
[44] Ghia U., Ghia K. N., and Shin C. T., High-Re solutions for incompressible flow
using the Navier-Stokes Equations and a multi-grid method, J. Comput. Phys.
1982; 48:387
[45] Fornberg B., A numerical study of steady viscous flow past a circular cylinder.
J. Fluid Mech. 1980; 98:819
[46] Ingham D. B and Tang T., A numerical investigation into the steady flow
past a rotating circular cylinder at low and intermediate Reynolds numbers. J.
Comput. Phys. 1990; 87:91
[47] Williamson C. H. K., Vortex dynamics in the cylinder wake, Ann. Ver. Fluid
Mech. 1996; 28:477
[48] Triton D. J., Experiments on the flow past a circular cylinder at low Reynolds
number, J. Fluid Mech. 1959; 6:547
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top