跳到主要內容

臺灣博碩士論文加值系統

(44.192.20.240) 您好!臺灣時間:2024/02/24 00:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:彭泰豪
研究生(外文):Tai-Hao Peng
論文名稱:單壁奈米碳管/酚醛樹脂複合材料之機電及熱性質研究
論文名稱(外文):Mechanical, Electrical and Thermal Properties of SWNTs/Phenolic Composites
指導教授:葉孟考葉孟考引用關係戴念華戴念華引用關係
指導教授(外文):Meng-Kao YehNyan-Hwa Tai
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:90
中文關鍵詞:單壁奈米碳管複合材料機械性質熱性質電性酚醛樹脂
外文關鍵詞:single wall carbon nanotubecompositemechanical propertythermal propertyelectrical propertyphenolic
相關次數:
  • 被引用被引用:1
  • 點閱點閱:307
  • 評分評分:
  • 下載下載:37
  • 收藏至我的研究室書目清單書目收藏:1
奈米碳管質輕、尺寸小、高強度、高韌性、導熱佳及具有優秀之電氣性質,為極佳之補強材。高分子材料為常使用之基材,其機械性質不佳,需加入補強材加以改善。奈米碳管與高分子材料混合,可提升高分子材料之性質,本研究以化學氣相沉積法生成之單壁奈米碳管補強熱固性高分子材料酚醛樹脂,探討不同碳管重量百分比對其機械、電氣及熱性質之影響。結果顯示,加入單壁奈米碳管可提升材料之機械性質,隨著碳管含量增加有飽和效應出現。另外以修正型Halpin-Tsai方程式可嵌合實驗數據。電性量測結果顯示,加入單壁奈米碳管可提升材料之導電度以降低電阻,當碳管含量達1.0wt%時可降低表面電阻率約10個數量級,導電門檻的閥值(Percolation threshold) 約為碳管含量0.5~1.0wt%。差式掃描熱量計(DSC)測試結果顯示,加入碳管可提升材料內部之交聯程度(Crosslink)並提高試片之玻璃轉換溫度(Glass transition temperature)。最後以掃描式電子顯微鏡觀察試片破壞面微結構,發現單壁奈米碳管於裂縫產生時之架橋現象(Crack-bridging)及碳管含量會影響複合材料內基材與補強材間之包覆及交聯情況。
The carbon nanotubes are known as good reinforcements because of the light weight, small size, high strength, high toughness, good thermal property and electrical conductivity. Polymers require reinforcements to improve their mechanical properties. Therefore, fabricating composites with carbon nanotubes can effectively improve the properties of polymers. In this thesis, single walled carbon nanotubes (SWNTs) synthesized using the floating catalyst method through the chemical vapor deposition (CVD) process were used to reinforce the phenolic resin. The effects of SWNTs content on the mechanical, electrical and thermal properties of the composites were investigated. The modified Halpin–Tsai equation was used to fit the experimental data of mechanical properties of SWNTs/phenolic composites. In addition, using SWNTs to reinforce phenolic resin can enhance the electrical conductivity and decrease the resistivity. The surface resistivity decreased about 10 orders of magnitude when the SWNTs content reached 1.0wt%. The percolation threshold of conductivity is between 0.5 and 1.0wt% of SWNTs in matrix. In the differential scanning calorimetry test (DSC), the composites have higher glass transition temperature than phenolic resin due to a better crosslink between the matrix and the reinforcement. The tensile fracture surfaces of SWNTs/phenolic composites were examined using field emission scanning electron microscope to investigate the failure morphologies of the SWNTs/phenolic composites. It is found that the crack-bridging in the cracks and the SWNTs content would indeed affect the crosslink and wetting between the matrix and the reinforcement.
目 錄
頁次
中文摘要………………………………………………………….…. i

英文摘要………………………………………………………….…. ii

誌謝………………………………………………………………….. iii

目錄…………………………………………………………………. v

圖表目錄……………………………………………………………. vii

第一章 緒論………………..……………………………………….. 1
1.1研究動機………………………...………………………….. 2
1.2參考文獻………………………...………………………….. 2
1.3研究主題………………………...………………………….. 7
第二章 實驗步驟……………..…………………………………….. 9
2.1實驗儀器…….………………………………………………. 9
2.2基材………………………………………………………….. 12
2.3化學氣相沉積法製備單壁奈米碳管…………….....……….. 12
2.4.複合材料試片製作……..…………………………………....料………………………………….
13
2.5拉伸測試…………………………….…….………………… 15
2.6差式掃描熱量計測試……………………………………….. 16
2.7拉曼光譜……………………………………………………... 17
2.8場發射掃描式電子顯微鏡之觀察…………………………...
18
第三章 數據分析方法…………………………………………..….. 20
3.1 ASTM測試規範..…………………………..……………...... 20
3.2數據分析……...………………………………………………態………………………………………………. 20
3.3最小平方法….…………………………………...………….. 21
3.4 Cox理論………………………………………..……………. 23
3.5 Halpin-Tsai方程式…………………………………………... 24
第四章 結果與討論………………………………………………… 29
4.1單壁奈米碳管成長…………………………………………... 29
4.2複合材料試片之製程與尺寸效應……………………….…..
…………………………………. 29
4.3複合材料拉伸測試之結果………………………….……….. 30
4.4 DSC測試結果...……………………………………………... 33
4.5電性量測…………………………………………………….. 35
4.6場發射掃描式電子顯微鏡(FESEM)之觀察………………... 36
第五章 結論.….……………………………………...…………….. 38
參考文獻……………………………..……………………………… 40
圖表………………………………..………………………………… 45

























圖表目錄
頁次
表4-1 1mm厚試片抗拉測試結果表…………...………………... 45
表4-2 2mm厚試片抗拉測試結果表……………….……………. 45
表4-3 棉球狀補強材拉伸測試結果表…………………………... 46
表4-4 薄膜狀補強材拉伸測試結果表…………………………... 46
表4-5 機械性質測試結果表……………………………………... 47
表4-6 DSC測試結果表…………………………………………... 48
表4-7 不同補強材形式之表面電阻率…………………………... 48
圖2-1 CVD系統…………………………………….……………. 49
圖2-2 場發射掃描式電子顯微鏡………………………………... 50
圖2-3 磁力攪拌機……………….……………………………….. 50
圖2-4 超音波震動機………….………………………………….. 51
圖2-5 鑽石切割機………………...……………………………… 51
圖2-6 熱壓機…………………..…………………………………. 52
圖2-7 真空烘箱…………………………...……………..……….. 52
圖2-8 拉壓試驗機及訊號蒐集系統……………...……………… 53
圖2-9 超高電阻量測儀…………………………………………... 54
圖2-10 可程式微歐姆計…………………………………………... 55
圖2-11 差式掃描熱量計…………………………………………... 55
圖2-12 拉曼光譜儀………...……………………………………… 56
圖2-13 單壁奈米碳管…...………………………………………… 56
圖2-14 單壁奈米碳管形貌圖……………………………………... 57
圖2-15 直徑統計圖……………………………............................... 57
圖2-16 不同形式之補強材………………………………………... 58
圖2-17 上下模、脫模布及鋁框擺設示意圖……………………… 59
圖2-18 拉伸測試試片圖…………………………………………... 60
圖2-19 純酚醛試片之應力-應變曲線圖………………………... 61
圖2-20 純酚醛試片之軸向應變-橫向應變曲線圖……………... 61
圖2-21 DSC示意圖………………………………………………... 62
圖2-22 拉曼光譜圖………………………………………………... 62
圖2-23 FESEM基本原理………………………………………….. 63
圖4-1 單壁奈米碳管形貌………………………………………... 64
圖4-2 拉曼頻譜圖………………………………………………... 65
圖4-3 未固化酚醛樹脂之DSC分析……….……………………. 66
圖4-4 複合材料之應力-應變曲線圖…………………………….. 66
圖4-5 複合材料之楊氏模數結果圖……….....………………….. 67
圖4-6 複合材料之抗拉強度結果圖……………………………... 67
圖4-7 複合材料之波松比結果圖………………………………... 68
圖4-8 複合材料之破壞應變結果圖……………………………... 68
圖4-9 以修正型Halpin-Tsai方程式嵌合實驗數據結果圖……... 69
圖4-10 酚醛樹脂之DSC分析結果圖…………………………….. 70
圖4-11 複合材料試片之DSC分析結果及微分曲線圖………….. 71
圖4-12 DSC分析結果趨勢圖……………………………………... 72
圖4-13 不同用途材料之表面電阻率….………………………….. 72
圖4-14 電性量測結果圖…………………………………………... 73
圖4-15 2mm厚之純酚醛樹脂試片破壞面……………………….. 74
圖4-16 1mm厚之純酚醛樹脂試片破壞面……………………….. 75
圖4-17 0.5wt%棉球狀單壁奈米碳管/酚醛樹脂試片破壞面…….. 76
圖4-18 1.0wt%棉球狀單壁奈米碳管/酚醛樹脂試片破壞面…….. 77
圖4-19 0.5wt%薄膜狀單壁奈米碳管/酚醛樹脂試片破壞面…….. 78
圖4-20 0.25wt%、0.5wt%、0.75wt%、1.0 wt%、1.5wt%及2.0wt%單壁奈米碳管/酚醛樹脂試片破壞面之架橋現象………..
79
圖4-21 0.25wt%試片之高倍率破壞面……………………………. 82
圖4-22 不同位置0.75wt%試片之高倍率破壞面SEM圖……….. 83
圖4-23 0.25wt%、0.5wt%、0.75wt%、1.0 wt%、1.5wt%及2.0wt%單壁奈米碳管/酚醛樹脂試片之高倍率破壞面…………..
85
圖4-24 0.25wt%、0.5wt%、0.75wt%、1.0 wt%、1.5wt%及2.0wt%單壁奈米碳管/酚醛樹脂試片之低倍率破壞面…………..
88
1. 馮榮豐、陳錫添,奈米工程概論,全華科技圖書股份有限公司,台灣台北,民國九十二年。
2. S. Iijima, “Helical microtubules of graphitic carbon,” Nature, Vol. 354, pp. 56-58, 1991.
3. 成會明,奈米碳管,五南圖書出版股份有限公司,台灣台北,民國九十三年。
4. E.T. Thostenson, Z. Ren and T.W. Chou, “Advences in the science and technology of carbon nanotubes and their composites:a review,” Composites Science and Technology, Vol. 61, pp. 1899-1912, 2001.
5. F. Li, H.M. Cheng, S. Bai and G. Su, “Tensile strength of single-walled carbon nanotubes directly measured from their macroscopic ropes,” Applied Physics Letters, Vol. 77, No. 20, pp. 3161-3163, 2000.
6. Y. Li, K. Wang, J. Wei, Z. Gu, Z. Wang, J. Luo and D. Wu, “Tensile properties of long aligned double-walled carbon nanotube strands,” Carbon, Vol. 43, pp. 31-35, 2005.
7. M.F. Yu, O. Lourie, M.J. Dyer, K. Moloni, T.F. Kelly, and R.S. Ruoff, “Strength and Breaking Mechanism of Multiwalled Carbon Nanotubes Under Tensile Load,” Science, Vol. 287, pp. 637-640, 2000.
8. H. Abe, T. Shimizu, A. Ando and H. Tokumoto, “Electric transport and mechanical strength measurements of carbon nanotubes in scanning electron microscope,” Physica E, Vol. 24, pp. 42-45, 2004.
9. C. Li and T.W. Chou, “Elastic moduli of multi-wall carbon nanotubes and the effect of van der Waals forces,” Composites Science and Technology, Vol. 63, pp. 1517-1524, 2003.
10. X. Sun and W. Zhao, “Prediction of stiffness and strength of single-walled carbon nanotubes by molecular-mechanics based finite element approach,” Materials Science and Engineering A, Vol. 390, pp. 366-371, 2005.
11. D.S. Lim, J.W. An and H.J. Lee, “Effect of carbon nanotube addition on the tribological behavior of carbon/carbon composites,” Wear, Vol. 252, pp. 512-517, 2002.
12. H. Cai, F. Yan, Q. Xue and W. Liu, “Investigation of tribological properties of Al2O3-polyimide nanocomposites,” Polymer Testing, Vol. 22, pp. 875-882, 2003.
13. S.R. Dong, J.P. Tu and X.B. Zhang, “An investigation of the sliding wear behavior of Cu-matrix composite reinforced by carbon nanotubes,” Materials Science and Engineering A, Vol. 313, pp. 83-87, 2001.
14. L. Joly-Pottuz, F. Dassenoy, B. Vacher, J.M. Martin and T. Mieno, “Ultralow friction and wear behaviour of Ni/Y-based single wall carbon nanotubes (SWNTs),” Tribology International, Vol. 37, pp. 1013-1018, 2004.
15. C. Park, Z. Ounaies, K.A. Watson, R.E. Crooks, J.S. Jr., S.E. Lowther, J.W. Connell, E.J. Siochi, J.S. Harrison and T.L. St. Clair, “Dispersion of single wall carbon nanotubes by in situ polymerization under sonication,” Chemical Physics Letters, Vol. 364, pp. 303-308, 2002.
16. S. Namilae, N. Chandra and C. Shet, “Mechanical behavior of functionalized nanotubes,” Chemical Physics Letters, Vol. 387, pp. 247-252, 2004.
17. Y. Zhang, Z. Shi, Z. Gu and S. Iijima, “Structure modification of single-wall carbon nanotubes,” Carbon, Vol. 38, pp. 2055-2059, 2000.
18. J. Zeng, B. Saltysiak, W.S. Johnson, D.A. Schiraldi and S. Kumar, “Processing and properties of poly(methyl methacrylate)/carbon nano fiber composites,” Composites Part B, Vol. 35, pp. 173-178, 2004.
19. 劉家豪,多壁奈米碳管/酚醛樹脂複合材料之機械性質研究,清華大學動力機械工程研究所碩士論文,2004。
20. 林彥君,以多壁奈米碳管及碳纖維補強酚醛樹脂之複合材料機械性質研究,清華大學動力機械工程研究所碩士論文,2005。
21. M. Zhang and R.P. Singh, “Mechanical reinforcement of unsaturated polyester by Al2O3 nanoparticles,” Materials Letters, Vol. 58, pp. 408-412, 2004.
22. C.C. Kao and R.J. Young, “A Raman apectroscopic investigation of heating effects and the deformation behaviour of epoxy/SWNT composites,” Composites Science and Technology, Vol. 64, pp. 2291-2295, 2004.
23. C. Wei, D. Srivastava and K. Cho, “Thermal Expansion and Diffusion Coefficients of Carbon Nanotube-Polymer Composites,” Nano Letters, Vol. 2, No. 6, pp. 647-650, 2002.
24. B.G. Min, T.V. Sreekumar, T. Uchida and S. Kumar, “Oxidative stabilization of PAN/SWNT composite fiber,” Carbon, Vol. 43, pp. 599~604, 2005.
25. H. Miyagawa and L.T. Drzal, “Thermo-physical and impact properties of epoxy nanocomposites reinforced by single-wall carbon nanotubes,” Polymer, Vol. 45, pp. 5163-5170, 2004.
26. Y. Breton, G. Desarmot, J.P. Salvetat, S. Delpeux, C. Sinturel and F. Beguin, “Mechanical properties of multiwall carbon nanotubes/epoxy composite:influence of network morphology,” Carbon, Vol. 42, pp. 1027-1030, 2004.
27. S.A. Meguid and Y. Sun, “On the tensile and shear strength of nano-reinforced composite interfaces,” Materials and Design, Vol. 25, pp. 289-296, 2004.
28. K.T. Lau, S.Q. Shi and H.M. Cheng, “Micro-mechanical properties and morphological observation on fracture surfaces of carbon nanotube composites pre-treated at different temperatures,” Composites Science and Technology, Vol. 63, pp. 1161-1164, 2003.
29. K.T. Lau, M. Lu, C.K. Lam, H.Y. Cheung, F.L. Sheng and H.L. Li, “Thermal and mechanical properties of single-walled carbon nanotube bundle-reinforced epoxy nanocomposites:the role of solvent for nanotube dispersion,” Composites Science and Technology, Vol. 65, pp. 719-725, 2005.
30. Y.T. Sung, C.K. Kum, H.S. Lee, N.S. Byon, H.G. Yoon and W.N. Kim, “Dynamic mechanical and morphological properties of polycarbonate/multi-walled carbon nanotube composites,” Polymer, Vol. 46, pp. 5656-5661, 2004.
31. H. Guo, T.V. Sreekumar, T. Liu, M. Minus and S. Kumar, “Structure and properties of polyacrylonitrile/single wall carbon nanotube composite films,” Polymer, Vol. 46, pp. 3001-3005, 2005.
32. F.H. Gojny, M.H.G. Wichmann, U. Kopke, B. Fiedler and K. Schulte, “Carbon nanotube-reinforced epoxy-composites:enhanced stiffness and fracture toughness at low nanotube content,” Composites Science and Technology, Vol. 64, pp. 2363-2371, 2004.
33. M.C. Paiva, B. Zhou, K.A.S. Fernando, Y. Lin, J.M. Kennedy and Y.P. Sun, “Mechanical and morphological characterization of polymer–carbon nanocomposites from functionalized carbon nanotubes,” Carbon, Vol. 42, pp. 2849-2854, 2004.
34. Y. Xu, G. Ray and B. Abdel-Magid, “Thermal behavior of single-walled carbon nanotube polymer–matrix composites,” Composites Part A, Vol. 37, pp. 114-121, 2006.
35. W. Chen and X. Tao, “Production and characterization of polymer nanocomposite with aligned single wall carbon nanotubes,” Applied Surface Science, Vol. 252, pp. 3547–3552, 2006.
36. E. Kymakis and G.A.J. Amaratunga, “Optical properties of polymer-nanotube composites,” Synthetic Metals, Vol. 142, pp. 161-167, 2004.
37. M.K. Seo and S.J. Park, “Electrical resistivity and rheological behaviors of carbon nanotubes-filled polypropylene composites,” Chemical Physics Letters, Vol. 395, pp. 44-48, 2004.
38. B. Kim, J. Lee and I. Yu, “Electrical properties of single-wall carbon nanotube and epoxy composites,” Journal of Applied Physics, Vol. 94, No. 10, pp. 6724-6728, 2003.
39. A. Allaoui, S. Bai, H.M. Cheng and J.B. Bai, “Mechanical and electrical properties of a MWNT/epoxy composite,” Composites Science and Technology, Vol. 64, pp. 2363-2371, 2004.
40. B.K. Zhu, S.H. Xie, Z.K. Xu and Y.Y. Xu, “Preparation and properties of the polyimide/multi-walled carbon nanotubes (MWNTs) nanocomposites,” Composites Science and Technology, Vol. 66, pp. 548-554, 2006.
41. Q. Zhang, S. Rastogi, D. Chen, D. Lippits, and P.J. Lemstra, “Low percolation threshold in single-walled carbon nanotube/high density polyethylene composites prepared by melt processing technique,” Carbon, Vol. 44, pp. 778-785, 2006.
42. X. Jiang, Y. Bin and M. Matsuo, “Electrical and mechanical properties of polyimide–carbon nanotubes composites fabricated by in situ polymerization,” Polymer, Vol. 46, pp. 7418-7424, 2005.
43. V. Skakalova, U. Dettlaff-Weglikowska and S. Roth, “Electrical and mechanical properties of nanocomposites of single wall carbon nanotubes with PMMA,” Synthetic Metals, Vol. 152, pp. 349-352, 2005.
44. C. Wei and D. Srivastava, “Structure Ordering in Nanotube Polymer Composites,” Nano Letters, Vol. 4, No. 10, pp. 1949-1952, 2004.
45. M. Lucas and R.J. Young, “Raman spectroscopic study of the effect of strain on the radial breathing modes of carbon nanotubes in epoxy/SWNTcomposites,” Composites Science and Technology, Vol. 64, pp. 2297-2302, 2004.
46. 村上新一(洪純仁 譯),酚醛樹脂,復文出版社,台灣台北,民國七十年。
47. ASTM D638-82a, “Standard Test Method for Tensile Properties of Plastics,” Annual Book of ASTM Standards, Vol. 8.2, 1981.
48. Skoog (林敬二 譯), 儀器分析,美亞書版股份有限公司,第五版。
49. FESEM JSM-6500F中文操作手冊。
50. R.F. Gibson, Principles of Composite Material Mechanics, McGraw-Hill, New York, 1994.
51. H.L. Cox, “The Elasticity and Strength of Paper and Other Fibrous Materials,” British Journal of Applied Physics, Vol. 3, pp. 72-79, 1952.
52. J.C. Halpin and S.W. Tsai, “Effects of Environmental Factors on Composite Materials,” Air Force Material Laboratory technical report, AFML-TR-67-423, 1969
53. M.K. Yeh, N.H. Tai and J.H. Liu, “Mechanical behavior of phenolic-based composites reinforced with multi-walled carbon nanotubes,” Carbon, Vol. 44, pp. 1-9, 2006.
54. 陳劉旺、丁金超,高分子加工,高立圖書有限公司,民國九十年。
55. http://www.asiateck.com.tw/index.htm
56. H.S. Katz and J.V. Milewski, Handbook of Fillers for Plastics, Van Nostrand Reninhold, New York, 1987.
57. ASTM D257, “Standard Test Methods for D-C resistance or conductance of insulating materials,” Annual Book of ASTM Standards, Vol. 10.2, 1984.
58. F.H. Gojny, M.H.G. Wichmann, B. Fiedler and K. Schulte, “Influence of different carbon nanotubes on the mechanical properties of epoxy matrix composites – A comparative study,” Composites Science and Technology, Vol. 65, pp. 2300-2313, 2005.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top