跳到主要內容

臺灣博碩士論文加值系統

(44.192.20.240) 您好!臺灣時間:2024/02/25 00:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:廖啟宏
研究生(外文):Chi-Hong Liao
論文名稱:貝索光鉗系統之基礎研究
論文名稱(外文):Basic study of a Bessel tweezers system
指導教授:賀陳弘賀陳弘引用關係
指導教授(外文):Hong Hocheng
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:50
中文關鍵詞:貝索鑷鉗軸稜錐透鏡雷射鑷鉗貝索光束
外文關鍵詞:Bessel tweezersAxiconLaser tweezersBessel beam
相關次數:
  • 被引用被引用:0
  • 點閱點閱:323
  • 評分評分:
  • 下載下載:49
  • 收藏至我的研究室書目清單書目收藏:0
本研究初步建立一套貝索光鉗系統,從這套系統中可以驗證貝索光束的特殊性質—自我修復的功能。此外,這套系統也可以導引微粒子超過1毫米的距離,此長度已超越雷利範圍(Rayleigh range)的10倍以上。再者,本研究中將5μm PMMA微粒子放在不同尺寸容器內以研究不同容器尺寸與粒子導引速度間的關係。最後,亦發現系統中雷射輸入功率在低於300mW時與粒子導引速度間存在著一線性關係。盼望藉由本基礎研究可提供更多貝索光鉗的資訊和方法,俾能激發更多新想法以供未來進一步的研究。
In this research, a Bessel tweezers system has been constructed successfully. One can demonstrate one of the remarkable properties of the Bessel beam—self reconstruction. Moreover, the Bessel tweezers system can also be used to guide micro-sized particles over 1mm, which is over 10 times the Rayleigh range. Furthermore, 5μm PMMA paticles are put in different dimensional cuvettes and the relationships between the guiding velocities and the dimensions of the cuvette are investigated. Finally, it is also found that the guiding velocities vary in a linear way with the laser input power which is below 300mW. This basic study is expected to provide the information and method to stimulate new research in the future.
圖目錄.....................................................................................................VII
表目錄……………………………………………………………….......X

第一章、序論……………………………………………………1
1.1 研究動機…..…………..….………………………………1
1.2 研究目標…………...……....……………………………...2

第二章、光鉗工作原理………………………………………4
2.1引言……………………………………………………4
2.2 光鉗原理…………………………………………………...4
2.2.1 光線光學理論模型與Mie粒子………….…………..5
2.2.2 電磁波理論模型與Rayleigh粒子………………......8
2.3 穩定光鉗的必要條件……………………………......9

第三章、文獻回顧…………………………………………...12
3.1 新穎的光鉗技術……………………………...……….12
3.1.1動態全像光鉗技術…………………..…………….12
3.1.2 雷射導引直寫技術……………………………...…14
3.2 無繞射貝索光束與貝索光鉗…….……………………..15
3.2.1 貝索光束的產生………….……….....……...17
3.2.2 貝索光鉗實驗………………..……………....18

第四章、實驗規劃與模擬……………………………………………..23
4.1 實驗目的………………………………………………….23
4.2 貝索光束能量分佈與行進距離的關係……………….....23
4.3 實驗系統與模擬分析…………………………………….27

第五章、實驗結果與討論………………………………………………31
5.1 近似貝索光束之量測………..…………………………...31
5.2 實驗樣品準備方法……………………………………….33
5.3 實驗結果………………………………………………….35
5.3.1 貝索光束自我修復功能之證明……………………35
5.3.2 使用貝索光束導引粒子……………………………37

第六章、結論與展望……………………………………………………43
6.1 貝索光束與高斯光束形成光鉗之比較.............................43
6.2 結論與未來工作………………………………………….44

參考文獻.. ………………………………………………………………46




圖目錄

圖 2.1 光束對微粒作用力的解析[7]....................................................6
圖 2.2 微粒於光鉗作用下,光鉗對微粒作用力分佈示意圖[7]…......7
圖 2.3 光鉗彈簧恢復力作用示意圖[11]..............................................9
圖 3.1 使用相位式液晶空間光學調制器進行三維動態控制的光鉗
技術示意圖[12]……………………………………………..13
圖 3.2 雷射導引直寫技術之系統示意圖[13]………………..……..14
圖 3.3 高斯光束之 Rayleigh range 示意圖………………………...15
圖 3.4 貝索光束橫截面圖形[31]……………………………………16
圖 3.5 高斯光束經過軸稜錐透鏡後轉換形成近似貝索光束[31]....17
圖 3.6 貝索光鉗系統的實驗設置[22]………………….…………...19
圖 3.7 5μm大小的粒子在水平方向從左方被導引至右方的三張連
拍照片((a) t = 0秒, (b) t =1.8秒, (c) t = 4.34秒) [22]………..20
圖3.8 以不同角度入射軸稜錐透鏡所產生不同程度的像散[27]…22
圖 4.1 均勻平面波經軸稜錐透鏡後其軸上能量分佈的關係圖…...24
圖4.2 高斯光源強度分佈模擬圖…………………….……………...25
圖4.3 模擬高斯光源經軸稜錐透鏡後其軸上的光強分佈圖..……...25
圖4.4 貝索光束光線追跡示意圖.........................................................26
圖4.5 貝索光鉗實驗系統架設圖……………………………………27
圖4.6 貝索光鉗實驗系統之光線追跡模擬圖………………………27
圖4.7 雷射光束打在軸稜錐透鏡上所形成的雜光……………...…..28
圖4.8 軸稜錐透鏡俯仰角的差異造成反射光路的差異:(a) 軸稜錐透
鏡無偏斜 (b) 軸稜錐透鏡偏斜0.5度…….........……………29
圖4.9 貝索光鉗實驗系統之雜光分析模擬圖……..………..……….30
圖 5.1 近似貝索光束量測系統圖…………………………………...31
圖 5.2 近似貝索光束沿光軸前進的變化情形(中心光束直徑 , 位
置)……………………............................................................32
圖 5.3 近似貝索光束中心光束的直徑變化………………………...33
圖 5.4 貝索光束之實驗系統圖...........................................................34
圖 5.5 H2O與D2O的光譜吸收圖[36]……………………………….35
圖 5.6 貝索光束具有自我修復的功能……………………………...36
圖 5.7 觀測貝索光束導引粒子之系統圖…………………………...37
圖 5.8 5μm微粒子被導引在貝索光束中的三張連拍照片((a) t = 0秒, (b) t =1秒, (c) t = 2秒)………................................................38
圖 5.9 容器1的雷射輸入功率與粒子導引速度的關係圖…..……39
圖 5.10 容器2的雷射輸入功率與粒子導引速度的關係圖………..40
圖 5.11 容器3的雷射輸入功率與粒子導引速度的關係圖,此時觀測貝索光束較強的能量段…………………………………..41
圖5.12 容器3的雷射輸入功率與粒子導引速度的關係圖,此時觀測貝索光束較弱的能量段……………………………………..41
圖5.13 三種容器的雷射輸入功率與粒子導引速度關係圖………...42
圖6.1 使用高斯光束與貝索光束形成光鉗的差異性比較圖((a)低NA值物鏡形成之高斯光鉗, (b)貝索光鉗) ……………………...43




表目錄

表5.1 不同顆粒與不同溶液組合的貝索光鉗實驗結果比較表…….34
表5.2 透明容器規格………………………………………………….37
[1] A. Ashkin, ”Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett., vol. 24, pp. 156-159, 1970.
[2] A. Ashkin, “Trapping of atoms by resonance radiation pressure,” Phys.
Rev. Lett., vol. 40, pp. 729-732, 1978.
[3] A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm and S. Chu, “Observation of a
single-beam gradient force optical trap for dielectric particle,” Opt. Lett.,
vol. 11, pp. 288-290, 1986.
[4] C. T. Lim, C. Dao, S. Suresh, C. H. Sow and K. T. Chew, “Large
deformation of living cells using laser traps,” Acta Materialia, vol. 52, pp.
1837-1845, 2003.
[5] Z. Li, B. Anvari, M. Takashima, P. Brecht, J. H. Torres and W. E.
Brownell, “Membrane tether formation from outer hair cells with
optical tweezers,” Biophysical Journal, vol. 82, pp.1386-1395, 2002.
[6] H. Felgner, F. Grolig, O. Muller and M. Schliwa, “In vivo manipulatoin
of internal cell organelles,” Methods in Cell Biology, vol. 55, pp.195-203,
1998 .
[7] A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric
sphere in the ray optics regime,” Biophys. J., vol. 61, pp. 569-582,
1992.
[8] A. Ashkin, “Optical trapping and manipulation of neutral particles using
lasers,” Proc. Natl. Acad. Sci. USA, vol. 94(10), pp. 4853- 4860, 1997.
[9] W.H. Wright, G.J. Sonek, M.W. Berns, “Parametric study of the forces on microspheres held by optical tweezers,” Appl. Opt., vol.33, pp.1735-1748
, 1994.
[10] E. Fllman and O. Axner, “Design for a fully steerable dual-trap optical
tweezers,” Appl. Opt., vol. 32, pp. 2107-2113, 1997.
[11] A. Ashkin, “Methods cell biology,” vol. 55, pp. 1-27, 1998.
[12] J. E. Curtis, B. A. Koss and D. G. Grier,” Dynamic holographic optical tweezers,” Opt. Commun. vol. 207, pp.169-175, 2002.
[13] D. J. Odde and M. J. Renn, “Laser-guided direct writing for applications in biotechnology,” Trends in Biotechnol., vol. 17, pp. 385–389, 1999.
[14] M. J. Renn and R. Pastel, “Particle manipulation and surface patterning by laser guidance,” J. Vacuum Sci. Technol. B, vol. 16, pp. 3859–3863, 1998.
[15] M. J. Renn, D. Montgomery, O. Vdovin, D. Z. Anderson, C. E.Wieman and E. A. Cornell, “Laser-guided atoms in hollow-core optical fibers,” Phys. Rev. Lett., vol. 75, pp. 3253–3256, 1995.
[16] D. J. Odde and M. J. Renn, “Laser-guided direct writing of living cells,” Biotechnol. and Bioeng., vol. 67, pp. 312–318, 2000.
[17] J. Durnin, J.J. Miceli and J.H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. , vol. 58, pp. 1499 – 1501, 1987.
[18] G. Scott and N. McArdle, “Efficient generation of nearly diffraction-free
beams using an axicon,” Opt.Eng. 31, pp.2640-2643, 1992.
[19] J. Turunen, A. Vasara and A.T. Friberg, “Holographic generation of
diffraction-free beams,” Appl. Opt. 27, pp. 3959-3962, 1988.
[20] W.X. Cong and N. X. Chen, “Generation of nondiffracting beams by
diffractive phase elements,” J. Opt. Soc. Am. A 15(9), pp. 2362-2364,
1998.
[21] J.A. Davis, J. Guertin and D.M. Cottrell, Appl. Opt. 32, pp. 6368, 1993.
[22] J. Arlt, V. Garces-Chavez, W. Sibbett and K. Dholakia, “Optical micromanipulation using a Bessel light beam,” Optics Communications, vol. 197, pp.239-245, 2001.
[23] Z. Bouchal, J. Wagner and M. Chlup, “Self-reconstruction of a distorted nondiffracting beam,” Optics Communications, vol. 151, pp. 207-211, 1998.
[24] A.T. O'Neill and M.J. Padgett, “Axial and lateral trapping efficiency of Laguerre-Gaussian modes in inverted optical tweezers,” Optics Communications, vol. 193, pp.45-50, 2001
[25] A. Thaning, Z. Jaroszewicz and A.T. Friberg, “Diffractive axicons
in oblique illumination: analysis and experiments and comparison with
elliptical axicons,” Appl. Opt. vol. 42, pp.9 – 17, 2003.
[26] Z. Bin and L. Zhu, “Diffraction property of an axicon in oblique
illumination,” Appl. Opt., vol. 37, pp. 2563 – 2568, 1998.
[27] T. Tanaka and S. Yamamoto, “Comparison of aberration between
axicon and lens ,” Opt. Commun., vol. 184, pp.113 – 118, 2000.
[28] K.C Neuman, “Characterization of photodamage to escherichia coli in optical traps,” Biophys J, vol. 77, pp. 2856-2863, 1999.
[29] A. Ashkin and J.M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science, vol. 235, pp. 1517-1520, 1987.
[30] H. Schneckenburger, “Cell viability in optical tweezers: high power red laser diode versus Nd:YAG laser,” J. Biomed Opt., vol. 5, pp. 40-44, 2000.
[31] D. Mcgloin and K. Dholakia, “Bessel beams: diffraction in a new light,” Contemporary Physics, vol. 46, pp. 15-28, 2005.
[32] 林易澤、魏明達, ”光束經軸稜錐透鏡的傳播特性與應用”, 逢甲大學碩士論文, pp.22, 2003.
[33] S.A. Tatarkova, W. Sibbett, and K. Dholakia, “Brownian particle in an
optical potential of the washboard type,” Physical Review Letters, vol.
91, pp. 038101-1~4, 2003.
[34] H. Little, C.T.A. Brown, V. Garcs-Chvez, W. Sibbett and K. Dholakia, “Optical guiding of microscopic particles in femtosecond and continuous wave Bessel light beams,” Optical Express, vol. 12, pp.2560-2565, 2004.
[35] V. Garcs-Chvez, D. Roskey, M. D. Summers, H. Melville, D.
McGloin, E. M. Wright and K. Dholakia “Optical levitation in a Bessel light beam,” Applied Physics Letters, Vol. 85, pp. 4001-4003, 2004.
[36] http://webexhibits.org/causesofcolor/5B.html
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top