跳到主要內容

臺灣博碩士論文加值系統

(34.204.169.230) 您好!臺灣時間:2024/03/03 00:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蔡宗展
研究生(外文):Tsung-Chan Tsai
論文名稱:二維度垂直梳狀致動微鏡面之設計與控制及光鉗系統之整合
論文名稱(外文):Design and Control of Two-Dimensional Vertical Comb-Drive Micromirrors in an Optical-Tweezers System
指導教授:陳榮順陳榮順引用關係
指導教授(外文):Rongshun Chen
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:86
中文關鍵詞:光鉗二維度垂直梳狀致動微鏡面CMOS適應性控制滑動控制非線性控制
外文關鍵詞:optical-tweezerstwo-dimensional (2-D)vertical comb-drive micromirrorCMOSadaptive controlsliding controlnonlinear control
相關次數:
  • 被引用被引用:0
  • 點閱點閱:234
  • 評分評分:
  • 下載下載:19
  • 收藏至我的研究室書目清單書目收藏:0
為整合一套以微鏡面為基礎的即時(real-time)光鉗操控系統,本論文設計了一新型的二維度八面形角度式垂直梳狀致動(angular vertical comb-drive,簡稱AVC)微鏡面,並且利用CMOS-MEMS製程配合後處理來製作元件。此種以CMOS-MEMS為基礎的二維度微鏡面具備以下的優點:低成本、高填充係數(fill factor)以及可與讀取及感測電路整合的能力。理論分析顯示,這種新型微鏡面相較於傳統方形之交錯式垂直梳狀致動(staggered vertical comb-drive,簡稱SVC)微鏡面能達到較大之機械轉角,其鏡面與平衡環部分分別可達±2.1°以及±1.8°之轉角。
本論文亦設計了一種結合適應性控制(adaptive control)與滑動控制(sliding control)的非線性控制器來解決垂直梳狀致動微鏡面的非線性扭矩特性以及系統參數不確定性的問題。模擬結果顯示,利用此種控制器可使微鏡面的狀態軌跡,以0.001°的循軌誤差在0.01秒以內收斂到一頻率為10赫茲之正弦波目標軌跡。
最後,本研究所提出的垂直梳狀致動微鏡面以及非線性控制器將被應用於該光鉗操控系統之中,配合所設計的影像處理介面程式來判斷細胞的所在位置,進一步地利用光鉗進行快速並準確的細胞取放與排列。
In this thesis, a novel CMOS two-dimensional (2-D) octagonal angular vertical comb-drive (AVC) micromirror is designed and fabricated for the application in a micromirror-based optical-tweezers system. The CMOS 2-D micromirror has the advantages of low cost, high fill factor, and capability of integration with readout circuit. According to the analysis, the proposed mirror has larger rotation angles, compared to the conventional rectangular staggered vertical comb-drive (SVC) micromirror. Rotation angles of ±2.1° and ±1.8° with respect to the mirror- and gimbal- axis can be achieved in this AVC octagonal 2-D micromirror.
In addition, the controller, combining adaptive control and sliding control, is designed to compensate the nonlinear torque and the parametric uncertainties of the vertical comb-drive micromirror. The numerical simulation results show that the micromirror can follow the desired trajectory of 10-Hz sinusoid with tracking error of less than 0.001° in 0.01 seconds.
Finally, an image processing interface is realized for cell recognition. The proposed micromirror, the nonlinear controller and the designed interface are integrated into the optical-tweezers system in application of cell manipulation and tissue construction.
中文摘要 i
Abstract ii
Acknowledgements iii
Table of Contents iv
List of Figures vi
List of Tables x
Chapter 1 Introduction 1
1.1 Background and Motivation 1
1.2 Literatures Review 5
1.3 Contents of This Thesis 9
Chapter 2 Design of CMOS-MEMS 2-D Vertical Comb-Drive Micromirror 10
2.1 Micromirror Design 10
2.1.1 Design Concept 10
2.1.2 Novel Octagonal AVC Micromirror 12
2.1.2 Other Designs for Comparison 16
2.1.3 Specification of Proposed 2-D Micromirrors 17
2.2 Operation Principle of Vertical Comb-Drive Micromirror 20
2.2.1 Vertical Comb-Drive Actuators 20
2.2.2 Theoretical Model of Vertical Comb-Drive Micromirror 21
Chapter 3 Analysis of CMOS-MEMS 2-D Vertical Comb-Drive Micromirror 24
3.1 Theoretical Analysis for Mechanical Rotation Angle 24
3.1.1 Hybrid Model 24
3.1.2 Calculated Rotation Angles of Proposed Micromirrors 26
3.1.3 Effect of Dielectric Layers 37
3.2 Simulation of Proposed Micromirrors 40
3.2.1 Curled-Hinge of AVC Micromirror 40
3.2.2 DC Characteristics 41
3.2.3 Dynamic Characteristics 43
Chapter 4 Design of Nonlinear Controller 44
4.1 System Nonlinearity and Uncertainty 44
4.2 Adaptive and Sliding Control 45
4.3 Simulation Results 50
4.3.1 Simulation Model and Open-Loop Performance 50
4.3.2 System with Nonlinear Controller 53
Chapter 5 Results and Discussions 63
5.1 Micromirrors Fabrication 63
5.1.1 Fabrication Processes 63
5.1.2 Fabrication Results 66
5.2 Nonlinear Control System 70
5.3 Integration of Optical-Tweezers System 75
Chapter 6 Conclusions and Future Works 81
6.1 Conclusions 81
6.2 Future Works 82
References 84
[1] H. Miyajima and N. Asaoka, “A MEMS electromagnetic optical scanner for a commercial confocal laser scanning microscope,” Journal of Microelectromechanical System, vol. 12, pp. 243-251, 2003.
[2] C. H. Ji and Y. K. Kim, “Electromagnetic micromirror array with single-crystal silicon mirror plate and aluminum spring,” Journal of Lightwave Technology, vol. 21, pp. 584-590, 2003.
[3] M. Huja and M. Husak, “Thermal microactuators for optical purpose,” Proceedings of International Conference on Information Technology: Coding and Computing, pp. 137-142, 2001.
[4] M. H. Kiang and D. A. Francis, “Actuated polysilicon micromirrors for raster-scanning displays,” International Conference on Solid State Sensors and Actuators, vol. 1, pp. 323-326, 1997.
[5] H. Schenk, P. Durr, D. Kunze, H. Lakner, and H. Kuck, “An electrostatically excited 2D-micro-scanning-mirror with an in-plane configuration of the driving electrodes,” International Conference on Micro Electro Mechanical Systems, pp. 473-478, 2000.
[6] J. J. Bernstein, W. P. Taylor, J. D. Brazzle, C. J. Corcoran, G. Kirkos, J. E. Odhner, A. Pareek, M. Waelti, and M. Zai, “Eletromagnetically actuated mirror arrays for use in 3-D optical switching applications,” Journal of Microelectromechanical System, vol. 13, pp. 526-535, 2004.
[7] Y. Mizuno, O. Tsuboi, N. Kouma, H. Soneda, H. Okuda, Y. Nakamura, S. Ueda, I. Sawaki, and F. Yamagishi, “A 2-axis comb-driven micromirror array for 3D MEMS switches,” IEEE/LEOS International Conference on Optical MEMS, pp. 17-18, 2002.
[8] T. W. Yeow, K. Y. Lim, B. Wilson, and A. A. Goldenberg, “A low-voltage electrostatically actuated MEMS scanner for in vivo biomedical imaging,” IEEE-EMB Special Topic Conference on Microtechnologies in Medicine & Biology, pp. 205-207, 2002.
[9] H. Toshiyoshi, W. Piyawattanametha, C. T. Chan, and M. C. Wu, “Linearization of electrostatically actuated surface micromachined 2-D optical scanner,” Journal of Microelectromechanical System, vol.10, pp. 205-214, 2001.
[10] J. A. Yeh, H. Jiang, and N. C. Tien, “Integrated polysilicon and DRIE bulk silicon micromachining for a torsional actuator,” Journal of Microelectromechanical System, vol. 8, pp. 456-465, 1999.
[11] Ashkin, "Acceleration and trapping of particle by radiation pressure," Physical Review Letters, vol. 24, pp. 154-159, 1970.
[12] C. Tseng, “Platform design of the cell assembly by optical tweezers,” Master Thesis, PME, NTHU, 2006. (in Chinese)
[13] H. Schenk, P. Durr, T. Haase, D. Kunze, U. Sobe, H. Lakner, and H. Kuck, “Large deflection micromechanical scanning mirrors for linear scans and pattern generation,” Journal of Selected Topics in Quantum Electronics, vol. 6, pp. 715-722, 2000.
[14] W. Piyawattanametha, P. R. Patterson, D. Hah, H. Toshiyoshi, and M. C. Wu, “A 2D scanner by surface and bulk micromachined angular vertical comb actuators,” IEEE/LEOS International Conference on Optical MEMS, pp. 93-94, 2003.
[15] D. Hah, C. A. Choi, C. K. Kim, and C. H. Jun, “A self-aligned vertical comb-drive actuator on an SOI wafer for a 2D scanning micromirror,” Journal of Micromechanics and Microengineering, vol. 14, pp. 1148-1156, 2004.
[16] S. Kwon, V. Milanovic, and L. P. Lee, “Vertical combdrive based 2-D gimbaled micromirrors with large static rotation by backside island isolation,” Journal of Selected Topics in Quantum Electronics, vol. 10, pp. 498-504, 2004.
[17] Y. Sakai, T. Yamabana, S. Ide, K. Mori, A. Ishizuka, O. Tsuboi, T. Matsuyama, Y. Ishii, and M. Kawai, “Nonlinear torque compensation of comb-driven micromirror,” IEEE/LEOS International Conference on Optical MEMS, pp. 83-84, 2003.
[18] H. Y. Chung, “Analysis and control of vertically combdrive-actuated micromirrors,” Master Thesis, PME, NTHU, 2004. (in Chinese).
[19] C. M. Lee, “Capacitive feedback control of vertical comb-driven micromirrors,” Master Thesis, PME, NTHU, 2006. (in Chinese)
[20] H. Xie, Y. Pan, and G. K. Fedder, “A CMOS-MEMS mirror with curled-hinge comb drives,” Journal of Microelectromechanical System,, vol. 12, pp. 450-457, 2003.
[21] M. C. Wu, “The development of optical MEMS fabrication platform—the case of micro scanning mirror driven by electrostatic comb-drive actuator,” Ph.D. Dissertation, PME, NTHU, 2005. (in Chinese)
[22] R. A. Conant, “Micromachined mirrors,” Ph.D. Dissertation, EECS, U. C. Berkeley, 2002.
[23] D. Hah, P. R. Patterson, H. D. Nguyen, H. Toshiyoshi, and M. C. Wu, “Theory and experiments of angular vertical comb-drive actuators for scanning micromirrors,” Journal of Selected Topics Quantum Electronics, vol. 10, pp. 503-513, 2004.
[24] J. E. Slotine and W. Li, Applied Nonlinear Control, Prentice Hall, pp. 276-288, 1991.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊