|
Abraham, C., Cornillon, P. A, Matzner-L$\o$ber, E. and Molinari, N. (2003), Unsupervised Curve Clustering Using B-splines. Scandinavian Journal of Statistics, 30, 581-595.
Alter, O., Brown, P. O. and Botstein, D. (2000), Singular Value Decomposition for Genome-Wide Expression Data Processing and Modeling. Proc. Natl. Acad. Sci. USA, 97, 10101-10106.
Arbeitman, M. N., Furlomg, E. E. M., Imam, F., Johnson, E., Null, B. H., Baker, B. S., Krasnow, M. A., Scott, M. P., Davis,, R. W. and White, K. P. (2002), Gene Expression During the Life Cycle of Drosophila Melanogaster, Science, 297, 2270-2275.
Ash, R. B. and Gardner, M. F. (1975), Topics in Stochastic Process, Academic Press, New York.
Banfield, J. D. and Raftery, A. E. (1993), Model-Based Gaussian and Non-Gaussian Clustering, Biometrics, 49, 803-821.
Castro, P. E., Lawton, W. H. and Sylvestre, E. A.(1986), Principal Modes of Variation for Processes With Continuous Sample Curves. Technometrics, 28, 329-337.
Chang, W. C. (1983), On Using Principal Components Before Separating a Mixture of Two Multivariate Normal Distributions. Appl. Statist., 32, 267-275.
Cho, R. J., Campbell, M. J., Winzeler, E. A., Steinmetz, L., Conway, A., Wodicka, L., Wolfsberg, T. G., Garielian, A. E., Landsman, D., Lockhart, D. J. and Davis, R. W. (1998), A Genome-Wide Transcriptional Analysis of the Mitotic Cell Cycle. Mol. Cell., 2, 65-73.
Eisen, M. B., Spellman, P. T., Brown, P. O. and Botstein, D. (1998), Cluster Analysis and Display of Genome-Wide Expression Patterns. Proc. Natl. Acad. Sci. USA, 95, 14863-14868.
Fan, J. and Gijbels, I. (1996), Local Polynomial Modelling and Its Application. Chapman & Hall, London.
Fraley, C. and Raftery, A. E. (2002), Model-Based Clustering, Discriminate Analysis and Density Estimation. J. Amer. Statist. Assoc., 97, 611-631.
Hall, P. and Heckman, N. E. (2002), Estimating and Depicting the Structure of A Distribution of Random Functions. Bimetrika, 89, 145-158.
Hartigan, J. A. and Wong, M. A. (1978), A k-Means Clustering Algorithm, Applied Statistics, 28, 100-108.
Heckman, N. E. and Zamar, K. K. J. (2000), Comparing the Shapes of Regression Functions. Biometrika, 87, 135-144.
Holter, N. S., Mitra, M., Maritan, A., Cieplak, M., Banavar, J. R. and Fedoroff, N. V. (2000), Fundamental Patterns Underlying Gene Expression Profiles : Simplicity from Complexity. Proc. Natl. Acad. Sci. USA, 97, 8409-8414.
Hubert, L. and Arabie, P. (1985), Comparing Partitions. Journal of Classification, 2, 193-218.
Iyer, V. R., Eisen, M. B., Ross, D. T., Schuler, G., Moore, T., Lee, J. C. F., Trent, J. M., Staudt, L. M., Hudson, J. Boguski, M., Lashkari, D., Shalon, D., Botstein, D. and Brown, P. O. (1999) The Transcriptional Program in the Response of Human Fibroblasts to Serum. Science, 283, 83-87.
James, G. M. and Sugar, C. A. (2003), Clustering for Sparsely Sampled Functional Data. J. Amer. Statist. Assoc., 98, 397-408.
Jolliffe, I. T. (2002), Principal Component Analysis. Springer, New York.
Kaufman, L. and Rousseeuw, P. (1990), Finding Groups in Data: An Introduction to Cluster Analysis, Wiley, New York.
Liu, X. and M$\mathrm{\ddot{u}}$ller, H. G. , (2003), Modes and Clustering for Time-Warped Gene Expression Profiles Data, Bioinformatics, 19, 1937-1944.
Luan, Y. and Li, H. (2003), Clustering of time-course gene expression data using a mixed-effects model with B-splines. Bioinformatics, 19, 474-482.
Ramsay, J. O. and Silverman, B. W. (1997), Functional data analysis. Springer, New York.
Rand, W. M. (1971), Objective criteria for the evaluation of clustering methods. J. Amer. Statist. Assoc., 66, 846-850.
Serban, N. and Wasserman, L. (2005), CATS: Clustering after transformation and smoothing. J. Amer. Statist. Assoc., 100, 990-999.
Spellman, P., Sherlock, G., Zhang, M. Q., Iyer, V. R., Anders, K., Esien, M. B., Brown, P. O., Botstein, D. and Futcher, B. (1998), Comprehensive Identification of Cell Cycle-Regulated Genes of the Yeast Saccharomyces Cerevisiae by Microarray Hybridization. Mol. Biol. Cell., 9, 3273-3297.
Staniswalis, J. G. and Lee, J. J. (1998), Nonparametric Regression Analysis of Longitudinal Data, J. Amer. Statist. Assoc., 93, 1403-1418.
Tamayo, P., Solni, D., Mesirov, J., Zhu, Q., Kitareewan, S., Dmitrovsky, E., Lander, E. S. and Golub, T. R. (1999), Interpreting patterns of gene expression with self-organizing maps : Methods and application to hematopoietic differenctation. Proc. Natl. Acad. Sci. USA, 96, 2907-2917.
Tarpey, T. and Kinateder, K. K. J. (2003), Clustering functional data. Journal of Classification, 20, 93-114.
Tavazoie, S., Hughes, D., Campbell, M. J., Cho, R. J. and Church, G. M. (1999), Systematic determination of genetic network architecture. Nature Genetics, 22, 281-285.
Tuddenham, R. D. and Snyder, M. M. (1954), Physical growth of California boys and girls from birth to eighteen years. University of California Publications in Child Development, 1, 183-364.
Yao, F., Mϋller, H. G., Clifford, A. J., Dueker, S. R., Follett, J., Lin, Y., Buchholz, B. A. and Vogel, J. S.(2003), Shrinkage estimation for functional principal component scores, with application to the population kinetics of plasma folate. Biometrics, 59, 676-685.
Yeung, K. Y. and Ruzzo, W. L. (2001), Principal component analysis for clustering gene expression data. Bioinformatics, 17, 763-774.
Yeung, K. Y., Fraley, C., Muruan, A., Raftery, A. E. and Ruzzo, W. L. (2001), Model-based clustering and data transformation for gene expression data. Bioinformatics, 17, 977-987.
Zhao X., Marron, J. S. and Wells, M. T. (2004), The Functional Data Analysis View of Longitudinal Data, Statistica Sinica, 14, 789-808.
|