跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/02/07 22:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王柏人
研究生(外文):Po-Jen Wang
論文名稱:光子晶體氮化鎵發光二極體製作與分析
論文名稱(外文):Fabrication and analysis of GaN photonic crystal LED
指導教授:黃惠良黃惠良引用關係
指導教授(外文):Huey-Liang Hwang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:83
中文關鍵詞:光子晶體氮化鎵發光二極體
外文關鍵詞:photonic crystalGaNLED
相關次數:
  • 被引用被引用:1
  • 點閱點閱:689
  • 評分評分:
  • 下載下載:240
  • 收藏至我的研究室書目清單書目收藏:2
中文摘要
氮化鎵系列的發光二極體已經成為紫外光到綠光發光二極體的主要材料。因為其寬能隙特性以及可改變鋁、鎵與銦成分比例去改變其能隙寬。高萃取效率的固態發光二極體目前在市場上有很大的需求,因為它的許多應用,包括全彩平面顯示器,汽車內外照明燈,以及一般照明。然而,雖然現在發光二極體的內部量子效率可以接近百分之百,但大部分的光都因為全反射而流失掉。
為了提高氮化鎵系列發光二極體之萃取效率,我們分別利用陽極氧化鋁模板技術以及電子束微影製程的技術來製作氮化鎵光子晶體發光二極體。根據我們的模擬結果,我們找出二維光子晶體氮化鎵發光二極體的最佳化設計,並根據此結果來製作之。在發光二極體的表面上蝕刻出六角形狀的孔洞來,其直徑為300奈米,晶格常數為500奈米,完成二維光子晶體發光二極體的製作。利用電性量測系統與微米級光激發光系統,研究光子晶體發光二極體的電學與光學特性。觀察出光子晶體發光二極體比較於一般發光二極體之發光效率有明顯的提升。並且我們發現以陽極氧化鋁模板及電子束微影技術製作的發光二極體,其正向電壓相對一般發光二極體都降低了。另外再研究其光學特性,觀察到光子晶體發光二極體的光激螢光強度比一般發光二極體提升了四倍,而其發光波長並沒有因為光子晶體結構而產生明顯偏移的情形。
Abstract
GaN based light-emitting diodes (LEDs) have become the most popular material for UV to green light LEDs. Because it has high band gap characteristics and wavelength variation by changing the concentration of Al, Ga and In. Solid-state LEDs with high extraction efficiency are currently in great demand for various applications including full color flat displays, automotive interior and exterior lights, and general lighting. However, while the internal quantum efficiency of visible LEDs is close to 100%, most of the light is lost due to total internal reflection (TIR).
In order to enhance the extraction efficiency of GaN based LEDs, we separately fabricated GaN photonic crystal LEDs with anodic aluminum oxide (AAO) template and e-beam lithography technologies. According to our simulation result, we find out the optimum design of 2D photonic crystal GaN LEDs, and fabricate them according to this result. Hexagonal lattice PCs with diameter/periodicity of 300/500 nm were patterned by etching. Electronics measurement system and micro PL system are used to analyze the electrical and optical properties of PC LED. We observed that the enhancement of efficiency of PC LED is obvious higher than that of the as-grown LED. And we find that the forward voltage of LEDs which were fabricated with the AAO template and e-beam lithography technologies is lower than that of the as-grown LED. In addition we studied the optical properties of PC LED, and we observed the photo luminescence (PL) intensity of PC LED is enhanced four-fold relative to that of the as-grown LED, and there are not obvious shift of the peak wavelength.
Contents
Chinese abstract…………………………………………….....1
English abstract……………………………………………….2
Acknowledgement……………………………………………..3
Contents………………………………………………………..4
List of Figures………………………………………………….7
List of Tables…………………………………………………10
Chapter 1 Introduction…….……...........................................11
1.1 Physical Properties of GaN…………………………………..12
1.1.1 History of blue, and green LEDs based on InGaN p-n junctions………………………………………………..14
1.1.2 Key issue for high efficiency LED fabrication………..14
1.1.3 Metal contacts…………………………………………..15
1.2 Introduction to Photonic Crystals…………………………...18
1.2.1 Early developmnet……………………………………...18
1.2.2 One, Two,and Three Dimensional Photonic Crystals...18
1.2.3 Photonic Crystals in nature……………………………19
1.3 Motivation…………………………………………………….21
1.4 Organization of the dissertation……………………………..22
1.5 References……………………………………………………..23
Chapter 2 Mechanism……………………………………….27
2.1 Semiconductor LED Efficiency……………………………...28
2.1.1 Injection Efficiency…………………………………….29
2.1.2 Internal Quantum Efficiency………………………….29
2.1.3 Extraction Efficiency…………………………………..31
2.2 The light escape cone…………………………………………32
2.3 PCs LEDs……………………………………………………..33
2.4 Anodic Aluminum Oxide (AAO)…………………………….34
2.4.1 Introduction to AAO…………………………………...34
2.4.2 Electropolishing………………………………………...37
2.4.3 Anodization……………………………………………..38
2.5 References…………………………………………………….41
Chapter 3 Experiment apparatus, process and measurement apparatus……………………………………………………..44
3.1 Experiment system…………………………………………...45
3.1.1 Anodic oxidation system……………………………….45
3.1.2 E-Beam Lithography System….....................................45
3.1.3 Mask aligner……………………………………………46
3.1.4 E-Gun system…………………………………………...47
3.1.5 Inductively coupled plasma reactive ion etching……..48
3.2 Experiment process…………………………………………..49
3.2.1 Sample preparation…………………………………….49
3.2.2 Photonic crystal LED fabrication with AAO
template………………………………………………...50
3.2.3 Photonic crystal LED fabrication with e-beam lithography system…………………………………….52
3.3 Measurement system and principle…………………………54
3.3.1 Micro PL system………………………………………..54
3.3.2 Micro Raman system…………………………………..55
3.3.3 X-Ray Diffraction (XRD)……………………………...56
3.3.4 Scanning electron microscopy…………………………56
3.4 References…………………………………………………….57
Chapter 4 Results and discussion…………………………...58
4.1 Scanning electron microscopy (SEM)……………………….59
4.2 Optical properties analysis…………………………………..62
4.3 Electrical properties analysis………………………………..67
4.4 Simulation result……………………………………………..68
4.5 References…………………………………………………….74
Chapter 5 Conclusions…………...………………………….75
References.................................................................................77



List of Figures

Figure 1-1-1 Application field with III-V LEDs…………………………….12
Figure 1-1-2 Bandgap and lattice constant of semiconductor compound...13
Figure 1-1-3 Energy band diagrams for a metal and p-type semiconductor…………………………………………………15
Figure 1-2-1 From left to right diagram, PCs are in one, two, and three dimensions. The red and yellow colors indicate the different refraction index………………………………………………..19
Figure 1-2-2 Butterfly crystals……………………………………………….20
Figure 1-2-3 High-resolution SEM images show the fine structure: a. blue male, blue region; b. blue male, blue-violet region; c. brown male. The insets in the lower left-hand corner show the 2D, logarithmic Fourier power spectra of square areas selected from the images. Note that the structural differences between a and b are manifested as color difference visible to the naked eye, and that in c the Fourier spectrum is practically featureless……………………………………………………...20
Figure 1-2-4 Spine of sea mouse, the sea mouse may not look like a mouse, but its hairs are photonic marvels. As the angle of incident light changes, the photonic crystal structure of the spines tunes their reflectance, making new colors appear…………21
Figure 2-1-1 Schematic diagram for loss due to total internal reflection…29
Figure 2-1-2(a) TIR results in light loss………………………………………...29
Figure 2-1-2(b) PCs increase LEDs efficiency………………………………….29
Figure 2-1-3 PC LED operation principle…………………………………..32
Figure 2-2-1 TIR and critical angle………………………………………….33
Figure 2-4-1 Schematic images of different kinds of templates (a) porous silicon (b) artificial opals (c) anodic aluminum oxide………35
Figure 2-4-2 SEM top view images of porous titanium oxide films anodized in 0.5 wt% HF solution for 20mins under different voltages: (a) 3V (b) 5V (c) 10V (d) 20V…………………………………36
Figure 2-4-3 The typical electropolishing system…………………………...38
Figure 2-4-4 Schematic drawing of the structure of anodic porous
Alumina………………………………………………………...39
Figure 2-4-5 Interpore distance vs. anodic voltage for sulfuric, oxalic, and phosphoric acid solution……………………………………...40
Figure 3-1-1 Anodic oxidation system……………………………………….45
Figure 3-1-2 E-Beam Lithography System………………………………….46
Figure 3-1-3 Karl-Suss aligner……………………………………………….46
Figure 3-1-4 E-Gun system…………………………………………………..47
Figure 3-1-5 ICP-RIE system………………………………………………...49
Figure 3-2-1 LED fabrication process and Structure defined……………...50
Figure 3-2-2 Two step anodization procedure………………………………51
Figure 3-2-3 Process flow to fabricate PC LED with Anodic Aluminum Oxide (AAO)…………………………………………………..52
Figure 3-2-4 Photonic crystal LED (PC-LED) fabrication………………...53
Figure 3-3-1 Micro PL measurement setup…………………………………54
Figure 3-3-2 Various scattering diagram……………………………………55
Figure 3-3-3 Bragg’s Law picture………………………………………….56
Figure 4-1-1(a) The SEM image of anodic aluminum oxide………..................60
Figure 4-1-1(b) The Cross-sectional image of anodic aluminum oxide……….60
Figure 4-1-2(a) GaN LED with AAO template…………………………………61
Figure 4-1-2(b) GaN LED without AAO template……………………………..61
Figure 4-1-3(a) The SEM image for a PC-LED device surface……………….61
Figure 4-1-3(b) Wide range SEM image for a PC-LED device surface. The hexagonal-lattice nano hole pattern was generated by the e-beam lithography method…………………………………..62
Figure 4-2-1 Schematic image of micro PL setup…………………………..63
Figure 4-2-2 Photo luminescence of as-grown, AAO, and PC LEDs……..64
Figure 4-2-3(a) Room temperature Micro Raman spectrum of as-grown, AAO, PC LEDs……………………………………………………….66
Figure 4-2-3(b) Enlarged image of room temperature Micro Raman spectrum of as-grown, AAO, PC LEDs…………………………………66
Figure 4-2-4 X-ray diffraction (XRD) patterns of as-grown and PC LED..67
Figure 4-3-1 I-V curve of as-grown, AAO, and PC LEDs………………….68
Figure 4-4-1(a) Rectangular arrays of holes……………………………………69
Figure 4-4-1(b) Triangular (or hexagonal) arrays of holes……………………70
Figure 4-4-2(a) Polar candela distribution plot of as-grown GaN LED……...71
Figure 4-4-2(b) Polar candela distribution plot of PC GaN LED……………..71
Figure 4-4-3(a) Polar iso-candela plot of as-grown GaN LED………………...72
Figure 4-4-3(b) Polar iso-candela plot of PC GaN LED……………………….72
Figure 4-4-4 Trace-Pro simulated EL intensity of PC LED with various depth of hole…………………………………………………...73



List of Tables

Table 1-1 Properties of substrate material…………………………………..14
Table 1-2 Most wildly used alloy contact for p-type GaN…………………..17
Table 1-3 Electrical Nature of Ideal MS Contacts…………………………..18
Table 2-1 Film characteristics for various electrolytes……………………...40
Table 4-1 The Raman peaks observed in the as-grown, AAO, PC GaN LEDs at room temperature……………………………………………….65
Table 4-2 simulate parameters………………………………………………..70
Table 4-3 Simulation result…………………………………………………...73
[1] H. Morkocü, S. Strite, G. B. Gao, M. E. Lin, B. Sverdlov, M. Burns, J. Appl. Phys. 76, 1363-1398 (1994)
[2] S. Nakamura, Science, 281, 956-961 (1998)
[3] Bernard Gil, Group III Nitride Semiconductor Compounds (Oxford, New York, 1998)
[4] S. Nakamura, Jap. J. Appl. Phys. 30, L1705 (1991)
[5] S. Nakamura et al. Jpn. J. Appl .Phys. 30, L1708 (1991)
[6] S. Nakamura, Takashi Mukai, and Masayuki Senoh, Appl. Phys. Lett. 64, 1687, (1994)
[7] S. Nakamura, Masayuki Senoh, N .Iwasa, S. Nagahama, Jpn. J. Appl. Phys. 34, L797 (1995)
[8] S. Nakamura, Masayuki Senoh, S. Nagahama, N .Iwasa T. Yamada, T. Matsushita, Y.Sugimoto, and H.Kiyoku, Appl. Phys. Lett. 69, 4056 (1996)
[9] S.Nakamura, Takashi Mukai, and Masayuki Senoh, J. Appl. Phys. 76, 12, (1994)
[10] S. Nakamura, Masayuki Senoh, J. Appl. Phys. 34, (1995)
[11] M. Koike, S. Yamasaki, Appl. Phys. Lett. 68, 10, (1996)
[12] Q. Z. Liu, and S. S. Lau, “A Review of the Metal-GaN Contact Technology”, Solid-State Electronics, 42, 677, (1998)
[13] J. S. Foresi, and T. D. Moustakas, “Metal Contacts to Gallium Nitride”, Appl. Phys. Lett., 62, 2859, (1993)
[14] M. E. Lin, F. Y. Huang, Z. F. Fan, L. H. Allen, and H. Morkoc, “Low Resistance Ohmic Contacts on Wide Band-gap GaN”, Appl. Phys. Lett., 64, 1003, (1994)
[15] Y. F. Wu, W. N. Jiang, B. P. Keller, S. Keller, D. Kapolnek, S. P. Denbaars, U.
K. Mishra, and B. Wilson, "Low Resistance Ohmic Contact to N-GaN With A
Separate Layer Method", Solid-State Electronics, 41, 165, (1997)
[16] Z. Fan, S. N. Mohammad, W. Kim, O. Aktas, A. E. Botchkarev, and, H. Morkoc, “Very Low Resistance Multilayer Ohmic Contact to n-GaN”, Appl. Phys. Lett., 68, 1672, (1996)
[17] X. A. Cao, S. J. Pearton, S. M. Donovan, C. R. Abernathy, F. Ren, J. C. Zolper,
M. W. Cole, A. Zeitouny, M. Eizenberg, R. J. Shul, and A. G. Baca, “Thermal Stability of WSix and W Ohmic Contacts on GaN” Materials Science and Engineering, B59, 362, (1999)
[18] J. L. Lee, J. K. Kim, J. W. Lee, Y. J. Park, and T. Kim, “Effect of Surface Treatment by KOH Solution on Ohmic Contact Formation of p-type GaN”, Solid-State Electronics, 43, 435, (1999)
[19] J. K. Sheu, Y. K. Su, G. C. Chi, W. C. Chen, C. Y. Chen, C. N. Huang, J. M.
Hong, Y. C. Yu, C. W. Wang, and E. K. Lin, “The Effect of Thermal Annealing
on the Ni/Au Contact of p-type GaN”, J. Appl. Phys., 83, 3172, (1998)
[20] J. K. Ho, C. S. Jong, C. C. Chiu, C. N. Huang, C. Y. Chen, and K. K. Shih,
“Low-Resistance Ohmic Contacts to p-type GaN”, Appl. Phys. Lett., 74,
1275, (1999)
[21] L. C. Chen, J. K. Ho, C. S. Jong, C. C. Chiu, K. K. Shih, F. R. Chen, J. J. Kai, L.
Chang, “Oxidized Ni/Pt and Ni/Au Ohmic Contacts to p-type GaN”, Appl. Phys. Lett., 76, 3703, (2000)
[22] T. Maeda, Y. Koide, and M. Murakami, Appl. Phys. Lett., 75, 4145, (1999)
[23] H. Kim, D. J. Kim, S. J. Park, and H. Hwang, J. Appl. Phys., 89, 1506, (2001)
[24] Yablonovitch, E. (UCLA), Inhibited spontaneous emission in solid-state physics and electronics, Phys. Rev. Lett. 58, 2059 (1987)
[25] S. John, Phys. Rev. Lett., 58, 2486, (1987)
[26] V. Kuzmiak, “Localized defect modes in a two-dimensional triangular photonic crystal,” Phys. Rev. B, Vol. 57, No. 24, June (1998)
[27] H. Y. Ryu, J. K. Hwang, Y. H. Lee, “Effect of size nonuniformities on the band gap of two-dimensional photonic crystals,” Phys. Rev. B, Vol. 59, No. 8, February (1999)
[28] M. Qiu, S. He, “Large complete band gap in two-dimensional photonic crystals with elliptic air holes,” Phys. Rev. B, Vol. 60, No. 15, October (1999)
[29] M. Qi, E. Lidorikis, P. T. Rakich, S. G. Johnson, J. D. Joannopoulos, E. P. Ippen, H. I. Smith, “A three-dimensional optical photonic crystal with designed point defects,” Nature, Vol. 429, pp. 538–542, June (2004)
[30] M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature, Vol. 404, pp. 53–56, March (2000)
[31] Y. A. Vlasov, X. Z. Bo, J. C. Sturm, D. J. Norris, “On-chip natural assembly of silicon photonic bandgap crystals,” Nature, Vol. 414, pp.289–293, November (2001)
[32] A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W.Leonard, C. Lopez, F. Meseguer, H. Miguez., J. P. Mondia, G. A. Ozin, O. Toader, H. M. van Driel, Nature, Vol. 405, pp. 437–440, May (2000)
[33] C. C. Cheng, A. Scherer, “Fabrication of photonic band-gap crystals,” J. Vac. Sci. Technol. B, Vol. 13, pp. 2696–2700 November (1995)
[34] Gérard Tayeb, Boris Gralak, Stefan Enoch, “Structural Colors in Natureand Butterfly-Wing Modeling,” Optics and Photonics News, pp.38–49, February (2003)
[35] L. P. Biró, Z. Bálint, K. Kertész, Z. Vértesy, G. I. Márk,1 Z. E.Horváth, J. Balázs, D. Méhn, I. Kiricsi, V. Lousse, J.-P. Vigneron, “Role of photonic-crystal-type structures in the thermal regulation of a Lycaenid butterfly sister species pair,” Phys Rev E., Vol. 67, No.021907, February (2003)
[36] A. R. Parker, R. C. McPhedran, D. R. McKenzie, L. C. Botten, N. A. P. Nicorvici, “Aphrodite’s iridescence,” Nature, Vol. 409, pp.36–37 ,January (2001)
[37] R.C. McPhedran et al., “Structural colours through photonic crystals,” Physica B, Vol. 338, pp. 182–185, (2003)
[38] T. N. Oder, K. H. Kim, J. Y. Lin, H. X. Jiang, Appl. Phys. Lett. Vol. 84 No. 4, (2004)
[39] E. FRED SCHUBERT “LIGHT-EMITTING DIODES”
[40] E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev., vol. 69, p. 681, (1946)
[41] Misha Boroditsky, Rutger Vrijen, Thomas F. Krauss, Roberto Coccioli, Raj Bhat, and Eli Yablonovitch, Lightwave Technol. Vol 17, p.2096-2112 November (1999)
[42] M. R. Krames, J. Bhat, D. Collins, N. F. Gardner, W. Gotz, C. H. Lowery, M. Ludowise, P. S. Martin, G. Mueller, R. Mueller-Mach, S. Rudaz, D. A. Steigerwald, S. A. Stockman and J. J. Wierer, Phys. Status Solidi A 192, 237 (2002)
[43] S. Chichibu, T. Azuhata, T. Sota, and S. Nakamura, Appl. Phys. Lett. 69, 4188 (1996)
[44] I. Schnitzer, E. Yablonovitch, C. Caneau, and T. J. Gmitter, Appl. Phys. Lett. 62, 131 (1993)
[45] T. Baba, R. Watanabe, K. Asano, F. Koyama, and K. Iga, Jpn. J. Appl. Phys., Part 1 35, 97 (1996)
[46] I. Schnitzer, E. Yablonovitch, C. Caneau, T. J. Gmitter, and A. Scherer, Appl. Phys. Lett. 63, 2174 (1993)
[47] S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, Phys. Rev. Lett. 78, 3294 (1997)
[48] M. Boroditsky, R. Vrijen, T. F. Krauss, R. Coccioli, R. Bhat, and E. Yablonovitch, J. Lightwave Technol. 17, 2096 (1999)
[49] A. A. Erchak, D. J. Ripin, S. Fan, P. Rakich, J. D. Joannopoulos, E. P. Ippen, G. S. Petrich, and L. A. Kolodziejski, Appl. Phys. Lett. 78, 563 (2001)
[50] J. Vucˇkovic´, M. Loncˇar, and A. Scherer, IEEE J. Quantum Electron. 36, 1131 (2000)
[51] M. R. Krames, M. Ochiai-Holcomb, G. E. Holfer, C. Carter-Coman, E. I. Chen, I. H. Tan, P. Grillot, N. F. Gardner, H. C. Chui, J. W. Huang, S. A. Stockman, F. A. Kish, M. G. Craford, S. T. Tan, C. P. Kocot, M. Hueschen, J. Posselt, B. Loh, G. Sasser, and D. Collins, Appl. Phys. Lett. 75, 2365 (1999)
[52] T. N. Oder, J. Shakya, J. Y. Lin, and H. X. Jiang, Appl. Phys. Lett. 83, 1231 (2003)
[53] J. J. Wierer, M. R. Krames, J. E. Epler, N. F. Gardner, M. G. Craford, J. R. Wendt, J. A. Simmons, and M. M. Sigalas, Appl. Phys. Lett. 84, 3885 (2004)
[54] J. Shakya, K. H. Kim, J. Y. Lin, and H. X. Jiang, Appl. Phys. Lett. 85, 142 (2004)
[55] S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and E. F. Schubert, Phys. Rev. Lett. 78, 3294 (1997)
[56] H. Rigneault, F. Lemarchand, and A. Sentenac, J. Opt. Soc. Am. A 17, 1048 (2000)
[57] M. Rattier, H. Benisty, R. P. Stanley, J.-F. Carlin, R. Houdré, U. Oesterle, C. J. M. Smith, C. Weisbuch, and T. F. Krauss, IEEE J. Sel. Top. Quantum Electron. 8, 238 (2002)
[58] N. V. Gaponenko, Synthetic Metals, 124, 125, (2001)
[59] Dawei Gong, Craig A. Grimes, J. Mater. Res., 16, 3331, (2001)
[60] R. C. Furneaux, W. R. Rigby, A. P. Davidson, Nature, 337, 147 (1989)
[61] H. Masuda, K. Fukuda, Science, 268, 1466 (1995)
[62] K. Nielsch, R. B. Wehrspohn, J. Barthel, J. Kirschner, Go U. sele, S. F. Fischer, Kronmu, H. ller, Appl. Phys. Lett., 79, 1360 (2001)
[63] R. Karmhag, T. Tesfamichael, E. Wackelgard, G. A. Niklasson, M. Nygren, Solar Energy, 68, 329 (2000)
[64] G. Che, B. B. Lakshmi, E. R. Fisher, C. R. Martin, Nature, 393, 346 (1998)
[65] G. Che, B. B.Lakshmi, C. R. Martin, E. R. Fisher, R. S. Ruoff, Chem. Mater., 10, 260 (1998)
[66] Z. B. Zhang, D. Gekhtman, M. S. Dresselhaus, J. Y. Ying, Chem. Mater., 11, 1659 (1999)
[67] G. Sauer, G. Brehm, S. Schneider, K. Nielsch, R. B. Wehrspohn, J. Choi, H. Hofmeister, U. Go sele, J. Appl. Phys., 91, 3243 (2002)
[68] R. B. Wehrspohn, A. P. Li, K. Nielsch, F. Muller, W. Erfurth, U. Go sele, In Oxide Films, K. R. Hebert, R. S. Lillard, B. R. MacDougall, Eds., Electrochemical Society: Pennington, PV-2000-4, 271 (2000)
[69] H. Masuda, H. Yamada, M. Satoh, H. Asoh, M. Nakao, T. Tamamura, Appl. Phys. Lett, 71, 2770 (1997)
[70] A. P. Li, F. Muller, U. Go sele, Electrochem. Sol.-State Lett., 3, 131. (2000)
[71] K. Z. Huber, Electrochem., 55, 165-9 (1951)
[72] H. Masuda, F. Hasegwa, and S. Ono, J. Electrochem. Soc. 144, L127 (1997)
[73] Hideki Masuda, Kenji Fukuda, Science 268, 1466 (1995)
[74] H. Masuda, K. Yada, and A. Osaka, Jpn. J. Appl. Phys., Part2 37, L1340 (1998)
[75] Kenji Orita, Satoshi Tamura, Toshiyuki Takizawa, Tetsuzo Ueda, Masaaki Yuri, Shinichi Takigawa and Daisuke Ueda, Jpn. J. Appl. Phys. Vol. 43 No. 8B, (2004)
[76] http://www.nfc.nctu.edu.tw/mechine/C_MaskAli.htm
[77] http://semi.tcfst.org.tw/Semi/E-GUN.asp
[78] Y. Kanamori, K. Hane, H. Sai, H. Yugami, Appl. Phys. Lett. 78, 142, (2001)
[79] T. Azuhata, T. Sota, K. Suzuki, and S. Nakamura, J. Phys. Condens.
Matter 7, 129 (1995)
[80] A. Tabata, R. Enderlein, J. R. Leite, S. W. da Silva, J. C. Galzerani, D. Schikora, M. Kloidt, and K. Lischka, J. Appl. Phys. 79, 4137 (1996)
[81] P. Perlin, A. Polian, and T. Suski, Phys. Rev. B 47, 2874 (1993)
[82] T. N. Oder, K. H. Kim, J. Y. Lin, and H. X. Jiang Appl. Phys. Lett. Vol. 84, 466, (2004)
[83] Dong-Ho Kim, Chi-O Cho, Yeong-Geun Roh, Heonsu Jeon, and Yoon Soo Park, Appl. Phys. Lett. 87, 203508 (2005)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top