跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2025/02/18 21:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:徐德義
研究生(外文):Der-Yi Hsu
論文名稱:二氧化碳雷射製作長週期光纖光柵之特性與應用研究
論文名稱(外文):Characteristic and Application Studies of Long-Period Fiber Gratings Fabricated by the use of CO2 Laser
指導教授:蕭憲彥祁 甡
指導教授(外文):Sen-Yen ShawSien Chi
學位類別:博士
校院名稱:國立清華大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:91
中文關鍵詞:光纖光柵長週期二氧化碳雷射雷射切削
外文關鍵詞:fiber gratinglong period gratingCO2 laserlaser ablation
相關次數:
  • 被引用被引用:1
  • 點閱點閱:379
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
長週期光纖光柵的優點相當多,例如製作容易、低插入損耗、低反射率及低極化相依等,因此,它已被廣泛地應用於光通訊及各種感測系統中。
長週期光纖光柵的製作,傳統上是利用紫外光源及光敏光纖來製作的;由於光纖在局部地區經過加熱後,該區域的應力會產生收縮或釋放,折射率也會因此而產生變化,近年來已漸由利用紫外光照射光敏光纖製作,改為使用一般光纖及熱源(包括電弧及二氧化碳雷射)來製作,此法的花費遠較傳統的製法低廉許多,目前已經逐漸受到重視。使用二氧化碳雷射做為製作長週期光柵的熱源有相當多的優點,二氧化碳雷射輸出功率高、輸出功率穩定且容易操控、寫入的光柵不易消褪、而且不需要購買昂貴的紫外光源及光敏光纖,整個製作成本遠低於傳統製法。
不同於以往的製法,為了提高局部區域的折射率變化,我們採用點對點的二氧化碳雷射切削技術來製作光柵,若單純地在局部加熱,折射率變化有限,耦合效率不佳,製作出的光柵長度一般都會超過2 cm,週期數約為20 ~ 50個,且共振波長的消光率大致上都低於30 dB,利用切削技術來製作光柵,光柵同時寫在纖蕊與纖殼,大幅地提昇了耦合效率,光柵長度減少至7.8 mm,12個週期數,且消光率高達32.2 dB。
在本論文中,我們除了改善原有的光柵製作技術且製得高耦合效率的長週期光纖光柵之外,將自製的長週期光纖光柵放置於高折射率的環境之中,調變光柵曲率,此光柵即成波長可調、消光率不變的可調式光柵;改變溫度可控制共振波長的位置,其敏感度高達0.26 nm/℃,藉由調變覆蓋在光柵周圍的高熱光係數物質(OCF-446)的折射率,可大幅增加共振波長的調變效率,在9 ℃的溫度變化中,共振波長移動範圍超過115 nm,調變效率約15 nm/℃,此一調變效率,遙遙領先目前已知的各種調變方式。以上特性,顯示此光柵可提供一波長可調範圍大、消光率對曲率不靈敏的可調式光柵,十分適於應用在光通訊系統及光學感測領域之中。
Long-period fiber gratings (LPFGs) are useful optical devices with many advantages, such as easy to be fabricated, low insertion loss, low back reflection rate, and polarization independent, etc. Thus they are widely used in optical communication systems and various kinds of sensing systems.
Conventionally, LPFGs are fabricated by use of photosensitive fibers and ultra violet lasers. Recently, non-ultraviolet (UV) based fabrication methods, such as arc discharge or CO2 laser, have attracted more and more attentions due to its much lower cost. By heating the fibers, the strain in them can be strengthened or relaxed so that refractive index changes are induced. There are many advantages to fabricate LPFGs by use of a CO2 laser, such as high and stable output power, easy to be controlled, no degradation problems of the inscribed gratings, and avoiding the need of expensive UV lights and photosensitive fibers.
Unlike the fabrication methods of others, we use the CO2 laser based point-by-point ablation technique to enhance the local index difference. If the LPFGs are fabricated by heating local areas of the fibers, the coupling efficiency is limited. Usually, the .grating length will be more than 2 cm, 20 ~ 50 periods, and the highest extinction ratio will be less than 30 dB. By use of the ablation technique, the grating is inscribed in the core and cladding simultaneously and its length is about 7.8 mm, 12 periods, with highest extinction ratio up to 32.2 dB.
In this article, we improve the fabrication method and obtain high coupling efficiency LPFGs. Surrounding a LPFG with high refractive index material and bending it, the extinction ratio of the grating can be kept as a constant while the resonance wavelength shifts. Changing the ambient temperature of a LPFG can change the resonance wavelength. The sensitivity of the LPFG is about 0.26 nm/℃. The sensitivity can be highly enhanced by tuning the refractive index of the covered polymer OCF-446 to slightly lower than that of the cladding. It is observed that the resonance wavelength shifts over 115nm within 9℃ and the sensitivity is estimated to be around 15nm/℃ which is much higher than that of other LPFGs. According to the above mentioned characteristics, our LPFGs can be bend-insensitive and tuning-efficient which makes them excellent devices to be applied to optical communication systems and sensing fields.
圖表索引 IV
中文摘要 VI
英文摘要 VII
誌謝 IX
第一章 緒論 1
1.1 內文 1
1.1 參考文獻 3
第二章 光纖光柵理論與製作 5
2.1 光纖光柵基本原理 5
2.2 光柵種類 6
2.2.1均勻光纖光柵 6
2.2.2相位移動光柵 7
2.2.3週期變動光柵 7
2.2.4 Apodized 光纖光柵 8
2.3 耦合模理論 8
2.4 長週期光纖光柵 10
2.5 光纖光柵的製作 11
2.5.1利用光敏性質製作光柵 11
2.5.2利用非光敏性質製作光柵 12
2.5.3 總結 12
2.6 參考文獻 13
第三章 雷射切削製作長週期光纖光柵及其特性 19
3.1 前言 19
3.2二氧化矽在10.6微米的吸收係數 19
3.3二氧化碳雷射特性 20
3.4 實驗架構 21
3.5 實驗結果與討論 22
3.5.1傳輸光譜量測 22
3.5.2 應力對共振波長的影響 22
3.5.3利用熱效應製作光柵 23
3.5.4切削深度對傳輸光譜的影響 24
3.6極化相依損耗 25
3.7 與電弧製作的長週期光纖光柵比較 26
3.8 總結 26
3.9 參考文獻 27
第四章 長週期光纖光柵的應用 30
4.1 前言 30
4.2應用一、曲率感測 30
4.2.1 實驗裝置 30
4.2.2 量測結果 31
4.2.3 結論 32
4.3應用二、高調變效率長週期光纖光柵 32
4.3.1 前言 32
4.3.2 實驗裝置 33
4.3.3 實驗結果與討論 33
4.3.4 結論 37
4.4 應用三、增益抑制器 37
4.4.1 原理 37
4.4.2實驗架構 38
4.4.3實驗結果與討論 38
4.4.4 結論 40
4.5 其他應用 40
4.6 總結 40
4.7 參考文獻 41
第五章 總結與未來展望 44
5-1 總結 44
5-2 未來展望 44
附錄A 自動控制程式 46


圖表索引
圖2-1 長週期光纖光柵中的相位匹配圖 47
圖2-2布瑞格光柵與長週期光柵中的所有可能耦合模式示意圖 47
圖2-3 各種光纖光柵的折射率分佈圖 48
圖2-4 典型的布瑞格光柵反射光譜圖 49
圖2-5 典型的長週期光纖光柵穿透光譜圖 50
圖2-6 在布瑞格光柵中央有 的相位移動後的穿透光譜圖 51
圖2-7 在長週期光纖光柵中,各種不同相位移動後的穿透光譜圖 52
圖2-8 典型的週期變化型布瑞格光柵圖 53
圖2-9 典型的Apodized 光柵光譜圖 54
圖3-1 二氧化碳雷射輸出能量與輸入電壓關係圖 55
圖3-2 輸入電壓與雷射輸出脈衝關係圖 56
圖3-3 雷射切削製作長週期光纖光柵裝置示意圖 57
圖3-4 光柵製作光譜演化圖。 58
圖3-5 不同週期下的傳輸光譜圖 59
圖3-6 初始應力與共振波長關係圖 60
圖3-7 降低雷射功率後所得之傳輸光譜圖 61
圖3-8 深削之後的光纖表面圖 62
圖3-9 淺削之後的光纖表面圖 63
圖3-10 不同切削深度時所對應的傳輸光譜圖 64
圖4-1 曲率量測裝置圖 65
圖4-2 傳輸光譜與曲率變化關係圖 66
圖4-3 光柵曲率與共振波長關係圖 67
圖4-4 高曲率與覆蓋高折射率匹配油對穿透光譜響應圖 68
圖4-5 溫度響應量測示意圖 69
圖4-6 OCF-446覆蓋在長周期光纖光柵周遭,整個系統置於TE cooler上的實驗裝置示意圖 70
表4-1 OCF-446 聚合物的基本特性 70
圖4-7 光柵的溫度響應圖 71
圖4-8 共振波長與溫度變化關係圖 72
圖4-9 光柵表面未覆蓋及覆蓋OCF-446之後的傳輸光譜圖 73
圖4-10 光柵表面覆蓋OCF-446,溫度32 ~ 37℃ 74
圖4-11 光柵表面覆蓋OCF-446,溫度38 ~ 40℃ 75
圖4-12 光柵表面覆蓋OCF-446,溫度43 ~ 58℃ 76
圖4-13光柵表面覆蓋OCF-446,各共振波長隨溫度的變化圖 77
圖4-14 溫度18 ~ 25℃時,傳輸光譜的變化關係圖 78
圖4-15 摻鉺光纖放大器的增益曲線及理想的平坦化增益曲線 79
圖4-16 摻鉺光纖放大器增益平坦示意圖 80
圖4-17 增益平坦曲線(a) ~ (c) 81
圖4-18增益平坦曲線(a) ~ (b) 84
圖4-19 環形光纖雷射基本構造圖 86
圖A-1 LabVIEW 自動控制程式介面 87
圖A-2 LabVIEW 自動控制程式流程圖 88
圖A-3 DA輸出、DG535與雷射輸出響應關係圖 89
表A-1 程式功能名稱對照表 91
第一章
[1] K. O. Hill, Y. Fujii, D. C. John, and B. S. Kawasaki, ”Photosensitivity in optical fiber waveguides:Application to reflection filter fabrication,” Applied Physics Letters 32, 647-649 (1978).
[2] B. S. Kawasaki, K. O. Hill, D. C. Johnson, and Y. Fuji, “Narrow-band Bragg reflectors in optical fibers,” Optics Letters 3, 66-68 (1978).
[3] G. Meltz, W. W. Morey, and W. H. Glenn, “Formation of Bragg gratings in optical fibers by a transverse holographic method,” Optics Letters 14, 823-825 (1989).
[4] D. K. W. Lam, B. K. Garside, “Characterization of single-mode optical fiber filters,” Applied Optics 20, 440-445 (1981).
[5] C. R. Giles, “Lightwave Applications of Fiber Bragg Gratings,” Journal of Lightwave Technology 15, 1391-1404 (1997).
[6] D. Pastor and B. Ortega, “Broad-band Tunable Microwave Transversal Notch Filter Based on Tunable Uniform Fiber Bragg Gratings as Slicing Filters,” IEEE Photonics Technology Letters 13, 726-728 (2001).
[7] Y. J. Rao, T. Zhu, Z. L. Ran, Y. P. Wang, J. Jiang, and A. Z. Hu, “Novel long-period fiber gratings written by high-frequency CO2 laser pulses and applications in optical fiber communication,” Optics Communications 229, 209-221 (2004).
[8] A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters”, Journal of Lightwave Technology 14, 58-65 (1996).
[9] Y. P. Wang and Y. J. Rao, “A Novel Long Period Fiber Grating Sensor Measuring Curvature and Determining Bend-Direction Simultaneously,” IEEE SENSORS JOURNAL, 1-5 (2005).
[10] Y. J. Rao, Y. P. Wang, Z. L. Ran, and T. Zhu, “Novel Fiber-Optic Sensors Based on Long-Period Fiber Gratings Written by High-Frequency CO2 Laser Pulses,” Journal of Lightwave Technology 21, 1320-1327 (2003).

第二章
[1] T. Erdogan, “Cladding-mode resonances in short- and long-period fiber grating filters,” Journal Optical Society of America 14, 1760-1773 (1997).
[2] K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” IEEE Journal of Lightwave technology, 15, 1263-1276 (1997).
[3] A. Othonos, “Fiber Bragg gratings,” Rev. sci. Instrum. 68, 4309-4341 (1997).
[4] Y. Koyamada, “Numerical Analysis of Core-Mode to Radiation-Mode Coupling in Long-Period Fiber Gratings,” IEEE Photonics Technology Letters 13, 308-310, (2001).
[5] Y. J. Rao, A. Z. Hu, and Y. C. Niu, “A novel dynamic LPFG gain equalizer written in a bend-insensitive fiber,” Optics Communications 244, 137-140 (2005).
[6] C. Narayanan, H. M. Presby, and A. M. Vengsarkar, “Band-rejection fibre using periodic core deformation,” Electronics Letters 33, 280-281, (1997).
[7] A. D. Kersey, M. A. Davis, H. J. Patrick, M. Leblanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber Grating Sensors,” Journal of Lightwave Technology 15, 1442-1463, (1997).
[8] J. Canning and M. G. Sceats, “ -phase-shifted periodic distributed structures in optical fibres by UV post-processing,” Electronics Letters 30, 1344-1345, (1994).
[9] Y. Liu, J. A. R. Williams, L. Zhang, and I. Bennion, “Phase shifted and cascaded long-period fiber gratings,” Optics Communications 164, 27-31, (1999).
[10] L. Wei and J. W. Y., Lit, “Phase-Shifted Bragg Grating Filters with Symmetrical Structures,” Journal of Lightwave Technology 15, 1405-1410, (1997).
[11] G. P. Agrawal and S. Radic, “Phase-Shifted Fiber Bragg Gratings and their Application for Wavelength Demultiplexing,” IEEE Photonics Technology Letters 6, 995-997, (1994).
[12] J. R. Qian and H. F. Chen, “Gain flattening fibre filters using phase-shifted long period fibre gratings,” Electronics Letters 34, 1132-1133, (1998).
[13] F. Ouellette, “Dispersion cancellation using linearly chirped Bragg grating filters in optical waveguides,” Optics Letters 12, 847-849 (1987).
[14] K. Sugden, L. Zhang, J. A. R. Williams, R. W. Fallon, L. A. Everall, K. E. Chisholm, and I. Bennion, “Fabrication and Characterization of Bandpass Filters Based on Concatenated Chirped Fiber Gratings,” Journal of Lightwave Technology 15, 1424-1432 (1997).
[15] M. C. Farries, C. M. Ragdale, and D. C. J. Reid, “Broadband chirped fibre Bragg filters for pump rejection and recycling in erbium doped fibre amplifiers,” Electronics Letters 28, 487-489 (1992).
[16] K. Sugden, L. Zhang, J. A. R. Williams, R. W. Fallon, L. A. Everall, K. E. Chisholm, and I. Bennion, “Fabrication and characterization of bandpass filters based on concatenated chirped fiber gratings,” IEEE Journal of Lightwave Technology 15, 1424-1432 (1997).
[17] R. W. Fallon, L. Zhang, A .Gloag, and I. Bennion, “Identical broadband chirped grating interrogation technique for temperature and strain sensing,” Electronics Letters 33, 705-706 (1997).
[18] J. Albert, K. O. Hill, D. C. Johnson, F. Bilodeau, and M. J. Rooks,”Moire phase masks for automatic pure apodisation of fibre Bragg gratings,” Electronics Letters 32, 2260-2261 (1996).
[19] H. Kogelnik, and C. V. Shank, “Coupled wave theory of distributed feedback lasers,” Journal of Applied Physics 43, 2327-2335 (1972).
[20] A. Yariv, P. Yeh, Optical Waves in Crystals, Chapter 4, 1984.
[21] T. Erdogan, “Fiber Grating spectra,” Journal of Lightwave Technology 15, 1277-1294 (1997).
[22] A. W. Snyder and J. D. Love, Optical Waveguide theory (Chapamn & Hall, 1983).
[23] P. S. Russell, D. P. Hand, Y. T. Chow, L. J. Poyntz-Wright, “Optically-induced creation, transformation and organisation of defects and colour-centres in optical fibres,” International Workshop on Photoinduced Self-Organization Effects in Optical Fiber, Quebebec City, May 10-11, Proceedings SPIE 1516, 47-54 (1991).
[24] K. O. Hill, Y. Fujii, D. C. John, and B. S. Kawasaki, ”Photosensitivity in optical fiber waveguides:Application to reflection filter fabrication,” Applied Physics Letters 32, 647-649 (1978).
[25] B. S. Kawasaki, K. O. Hill, D. C. Johnson, and Y. Fuji, “Narrow-band Bragg reflectors in optical fibers,” Optics Letters 3, 66-68 (1978).
[26] G. Meltz, W. W. Morey, and W. H. Glenn, “Formation of Bragg gratings in optical fibers by a transverse holographic method,” Optics Letters 14, 823-825 (1989).
[27] V. Bhatia and A. M. Vengsarkar, “Optical fiber long-period grating sensors,” Optics Letters 21, 692-694 (1996).
[28] A. M. Vengsarkar, J. R. Pedrazzani, J. B. Judkins, and P. J. Lemaire, “Long-period fiber-grating-based gain equalizers,” Optics Letters 21, 336-338 (1996).
[29] B. Malo, K. O. Hill, F. Bilodeau, D. C. Johnson, and J. Albert, “Point-by-Point Fabrication of Micro-Bragg Gratings in Photosensitive Fibre Using Single Excimer Pulse Refractive Index Modification Techniques,” Electronics Letters 29, 1668-1669 (1993).
[30] K. O. Hill, B. Malo, K. A. Vineberg, F. Bilodeau, D. C. Johnson, I. skinner, “Efficient mode conversion in telecommunication fiber using externally written gratings,” Electronics Letters 26, 1270-1272 (1990).
[31] L. Zhang, Y. Liu, L. Everall, J. A. R. Williams, and I. Bennion, “Design and realization of LPG devices in conventional and high birefringence Fibers and Their Novel Applications as Fiber-Optic Load Sensors,” IEEE Journal of Selected Topics in Quantum Electronics 5, 1373-1378 (1999)
[32] C. C. Ye, S. W. James, and R. P. Tatam, “Simultaneous temperature and bend sensing with long-period fiber gratings,” Optics Letters 25, 1007-1009 (2000).
[33] D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler and A. M. Vengsarkar, “Long-period fibre grating fabrication with focused CO2 laser pulses,” Electronics Letters 34, 302-30 (1998).
[34] Y. Zhu, P. Shum, X. Chen, C. H. Tan, and C. Lu, “Resonance- temperature-insensitive phase-shifted long-period fiber gratings induced by surface deformation with anomalous strain characteristics,” Optics Letters 30, 1788-1790 (2005).
[35] S. H. Nam, C. Zhan, J. Lee, C. Hahn, K. Reichard, P. Ruffin, K. L. Deng, and S. Yin, “Bend-insensitive ultra short long-period gratings by the electric arc method and their applications to harsh environment sensing and communication,” Optics Express 13, 731-737(2005).
[36] C. Y. Lin and L. A. Wang, “A Wavelength and loss tunable band-rejection filter based on corrugated long-period fiber grating,” IEEE Photonics Technology Letters 13, 332-334 (2001).
[37] S. Savin, M. J. F. Digonnet, G. S. Kino, and H. J. Shaw, “Tunable mechanically induced long-period fiber gratings,” Optics Letters, 25, 710-712 (2000).
[38] Y. Kondo, K. Nouchi, T. Mitsuyu, M. Watanabe, P. G. Kazansky, and K. Hirao, “Fabrication of long-period fiber gratings by focused irradiation of infrared femtosecond laser pulses” Optics Letters 24, 646-648 (1999).
[39] B. H. Kim, Y. Park, T. J. Ahn, D. Y. Kim, B. H. Lee, Y. Chung, U. C. Paek, and W. T. Han, “Residual stress relaxation in the core of optical fiber by CO2 laser irradiation,” Optics Letters 26, 1657-1659 (2001).
[40] B. H. Kim, Y. Park, T. J. Ahn, D. Y. Kim, B. H. Lee, Y. Chung, U. C. Paek, and W. T. Han, “Effect of CO2 laser irradiation on the refractive-index change in optical fibers,” Applied Optics 41, 3809-3815 (2002).
[41] Y. Zhu, P. Shum, J. H. Chong, M. K. Rao, and C. Lu, “Deep-notch, ultracompact long-period grating in a large-mode-area photonic crystal fiber,” Optics Letters 28, 2467-2469 (2003).
[42] P. J. Lemaire, R. M. Atkins, V. Mizrahi, and W. A. Reed, “High pressure H2 loading as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO2 doped optical fibres,” Electronics Letters 29, 1191-1193 (1993).
[43] S. H. Nam, C. Zhan, J. Lee, C. Hahn, K. Reichard, P. Ruffin, K. L. Deng, and S. Yin, “Bend-insensitive ultra short long-period gratings by the electric arc method and their applications to harsh environment sensing and communication,” Optics Express 13, 731-737 (2005).

第三章
[1] A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” IEEE Journal of Lightwave Technology, 14, 58-65 (1996).
[2] S. H. Nam, C. Zhan, J. Lee, C. Hahn, K. Reichard, P. Ruffin, K. L. Deng, and S. Yin, “Bend-insensitive ultra short long-period gratings by the electric arc method and their applications to harsh environment sensing and communication,” Optics Express, 13, 731-737, (2005).
[3] D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler and A. M. Vengsarkar, “Long-period fibre grating fabrication with focused CO2 laser pulses,” Electronics Letters, 34, 302-30 (1998).
[4] C. Narayanan, H. M. Presby, and A. M. Vengsarkar, “Band-rejection fiber filter using periodic core deformation,” Electronics Letters 33, 280-281 (1997).
[5] S. Savin, M. J. F. Digonnet, G. S. Kino, and H. J. Shaw, “Tunable mechanically induced long-period fiber gratings,” Optics Letters 25, 710-712 (2000).
[6] C. D. Poole, H. M. Presby and J. P. Meester, “Two-mode fibre spatial-mode converter using periodic core deformation,” Electronics Letters 30, 1437-1438 (1994).
[7] A. D. McLachlan and F. P. Meyer, “Temperature dependence of the extinction coefficient of fused silica for CO2 laser wavelengths,” Applied Optics 26, 1728-1731 (1978).
[8] R. S. Chang and S. Y. Shaw, “Compact high-efficiency CO2 slab waveguide lasers with segmented RF excitation”, Journal of Japanese Applied Physics 40, 4552-4555, (2001).
[9] Y. Hibino, F. Hanawa, T. Abe, and S. Shibata, “Residual stress effects on refractive indices in undoped silica-core single-mode fibers,” Applied Physics Letters 50, 1565-1567 (1987).
[10] M. I. Braiwish, B. L. Bachim, and T. K. Gaylord, “Prototype CO2 laser-induced long-period fiber grating variable optical attenuators and optical tunable filters,” Applied Optics 43, 1789-1793 (2004).
[11] U. C. Paek and C. R. Kurkjian, “Calculation of cooling rate and induced stresses in drawing of optical fibers,” Journal of American Ceramic Society 58, 330-335 (1975).
[12] W. Primak and D. Post, ”Photoelastic constants of vitreous silica and its elastic coefficient of refractive index,” Journal of Applied Physics 30, 779-788 (1959).
[13] P. Lu, L. Chen, and X. Bao, “System outage probability due to the combined effect of PMD and PDL,” Journal of Lightwave Technology 15, 1805-1808 (2002).
[14] A. R. Vellekoop and M. K. Smit, “Four-channel integrated-optic wavelength demultiplexer with weak polarization dependence,” Journal of Lightwave Technology 9, 310-314 (1991).
[15] B. Szafraniec and G. A. Sanders, “Theory of polarization evolution in interferometric fiber-optic depolarized gyros,” Journal of Lightwave Technology 17, 579-590 (1999).
[16] M. Rochette, S. LaRochelle, P. Y. Cortes, M. Guy, and J. Lauzon, “Polarisation mode dispersion compensation of chirped Bragg gratings used as chromatic dispersion compensators,” Electronics Letters 36, 342-343 (2000).
[17] B. L. Bachim and T. K. Gaylord, “Polarization-dependent loss and birefringence in long-period fiber gratings,” Applied Optics 42, 6816-6823 (2003).
[18] K. Morishita and Y. Miyake, “Fabrication and Resonance Wavelengths of Long-Period Gratings Written in a Pure-Silica Photonic Crystal Fiber by the Glass Structure Change,” Journal of Lightwave Technology 22, 625-630 (2004).
[19] H. Dobb, K. Kalli, and D. J. Webb, “Temperature-insensitive long period grating sensors in photonic crystal fibre,” Electronics Letters 40, No.11, 27th, May, 2004.
[20] Y. Zhu, P. Shum, H. J. Chong, M. K. Rao, and C. Lu, “Strong resonance and a highly compact long-period grating in a large-mode-area photonic crystal fiber,” Optics Express 11, 1900-1905 (2003).

第四章
[1] A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters”, Journal of Lightwave Technology 14, 58-65 (1996).
[2] K. W. Chung, S. Yin, “Analysis of a widely tunable long-period grating by use of an ultrathin cladding layer and high-order cladding mode coupling,” Optics Letters 29, 812-814 (2004).
[3] I. D. Villar, I. R. Matias, F. J. Arregui, and P. Lalanne, “Optimization of sensitivity in Long Period Fiber Gratings with overlay deposition, “ Optics Express 13, 56-69 (2005).
[4] X. Shu, T. Allsop, B. Gwandu, L. Zhang, and I. Bennion, “High-Temperature Sensitivity of Long-Period Gratings in B-Ge Codoped Fiber,” IEEE Photonics Technology Letters 13, 818-820 (2001).
[5] H. J. Patrick, A. D. Kersey, and F. Bucholtz, “Analysis of the Response of Long Period Fiber Gratings to External Index of Refraction,” Journal of Lightwave Technology 16, 1606-1612 (1998).
[6] S. H. Nam, C. Zhan, J. Lee, C. Hahn, K. Reichard, P. Ruffin, K. L. Deng, and S. Yin, “Bend-insensitive ultra short long-period gratings by the electric arc method and their applications to harsh environment sensing and communication,” Optics Express 13, 731-737 (2005).
[7] E. Anemogiannis, E. N. Glytsis and T. K. Gaylord, “Transmission characteristics of long-period fiber gratings having arbitrary azimutal/radial refractive index variation,” Journal of Lightwave Technology 21, 218-227 (2003).
[8] T. Erdogan, “Fiber Grating Spectra,” Journal of Lightwave Technology 15, 1277-1294 (1997).
[9] A. Cusano, A. Iadicicco, P. Pilla, L. Contessa, S. Campopiano, and A. Cutolo, “Cladding mode reorganization in high-refractive-index-coated long-period gratings: effects on the refractive-index sensitivity,” Optics Letters 30, 2536-2538 (2005).
[10] A. R. Chraplyvy, R. W. Tkach, K. C. Reichmann, P. D. Magill, and J. A. Nagel, “End-to-end equalization experiments in amplified WDM lightwave systems,” IEEE Photonics Technology Letters 4, 428-429 (1993).
[11] J. X. Cai,K. M. Feng, X. P. Chen, and A. E. Willner, “Equaliztion of Nonuniform EDFA Gain Using a Fiber-Loop Mirror,” IEEE Photonics Technology Letters 9, 916-918 (1997).
[12] M. Rochette, M. Guy. S. LaRochelle, J. Lauzon, and F. Trepanier, “Gain Equalization of EDFA’s with Bragg Gratings,” IEEE Photonics Technology Letters 11, 536-538 (1999).
[13] A. M. Vengsarkar, J. R. Pedrazzanni, J. B. Judkins, and P. J. Lemaire, “Long-period fiber-grating-based gain equalizers,” Optics Letters 21, 336-338 (1996).
[14] J. R. Qian and H. F. Chen, “Gain flattening fibre filters using phase-shifted long period fibre gratings,” Electronics Letters 34, 1132-1133 (1998).
[15] Y. J. Rao, A. Z. Hu, and Y. C. Niu, “A novel dynamic LPFG gain equalizer written in a bend-insensitive fiber,” Optics Communications 244, 137-140 (2005).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top