|
References
[1] Gonzalez, R.C., and Woods R.E, Digital Image Processing, 2nd ed., Pearson Education, 2003. [2] G. Matheron, Random Sets and Integral Geometry, New York: J. Wiley & Sons, 1975. [3] J. Serra, Image Analysis and Mathematical Morphology, London: Academic Press, 1982. [4] J. Serra and P. Soille, eds., Mathematical Morphology and its Applications to Image Processing, Dordrecht-Boston-London: Kluwer Academic Publishers, 1994. [5] H. Minkowski, “Volumen und Oberflache”, Math. Ann., vol. 57, pp. 447-495, 1903. [6] R. Urbanski, “A generalization of the Minkowski–Rådström–Hörmander theorem”, Bull. Acad. Polon. Sci. Ser. Sci. Math., Astr., Phys., vol. 24, pp. 709–715, 1976. [7] J. C. Dunn, “A fuzzy relative of the ISODATA process and its use in detecting compact well-sparated clusters”, J. Cybern., vol. 3, pp. 32–57, 1973. [8] J. C. Bezdek, “A convergence theorem for the fuzzy ISODATA clustering algorithms”, IEEE Trans. on Pattern Anal. Machine Intell.(PAMI), vol. PAMI-2, no.1, pp. 1–8, Jan. 1980. [9] R. Bajscy, “Computer identification of visual surfaces”, Computer Graphics and Image Processing, vol. 2, pp. 118-130, 1973. [10] S. G. Carlton and 0. R. Mitchell, “Image segmentation using texture and gray level,” in Proc. IEEE Conf. Puttem Recog. Image Processing, 1977. [11] T. Pavlidis and P. C. Chen, “Segmentation by texture using cooccurrence matrix and split-and-merge algorithm”, Computer Vision Graphics and Image Processing, vol. 10, pp. 172-182, 1979. [12] R. W. Conners, M. M. Trivedi, and C. A. Harlow, “Segmentation of a high resolution urban scene using texture operators”, Computer Graphics and Image Processing, vol. 25, pp. 273-310, 1984. [13] H. Knutsson and G. H. Granlund, “Texture analysis using two dimensional quadratic filter,” in ICASSP 83, IEEE Conf. on Acoustics, Speech und Signal Process, 1983. [14] K. I. Laws, “Rapid texture identification”, SPIE, vol. 238, pp. 376-380, 1980. [15] J. Y. Hsiao and A. A. Sawchuk, “Supervised Textured Image Segmentation Using Feature Smoothing and Probabilistic Relaxation Techniques”, IEEE Trans on Pattern Anal. Machine. Intel (PAMI), vol. 11, pp. 1279-1292, 1989. [16] A.K. Jain and F. Farrokhnia, “Unsupervised texture segmentation using gabor filters”, Pattern Recognition, vol. 24, pp. 1167-1186, 1991. [17] F. Farrokhnia, “Multi-channel filtering techniques for texture segmentation and surface quality inspection,” Ph. D. Thesis, Michigan State University, Michigan, 1992. [18] J. M. H. Du Buf, “Abstract processes in texture discrimination”, Spatial Vision, vol. 6, 1992. [19] R. Wilson and M. Spann, “Finite prolate spheroidal sequences and their application ii: Image feature description and segmentation”, IEEE Trans. on Pattern Anal. and Machine Intell.(PAMI), vol. 10, pp. 193-203,1988. [20] J. Keller, R. Crownover, and S. Chen, “Texture Description and Segmentation through Fractal Geometry”, Computer Vision Graphics and Image Processing, vol. 45, pp. 150-1 60, 1989. [21] B. B. Chaudhuri, N. Sarkar, and P. Kundu, “An Improved Fractal Geometry Based Texture Segmentation Technique,” in Proc. IEE-part E, 1993, pp, 140, 223-241. [22] M. Sonka, V. Hlavac, and R. Boyle, Image Processing, Analysis, and Machine Vision, 2nd ed., International Thomson Computer Press, 1996. [23] M. Tuceryan and A. Jain, “Texture analysis”, in The Handbook of Pattern Recognitionand Computer Vision, World Scientific, 1998, pp. 207–248.. [24] B. Mandelbrot, “How long is the coast of Britain? Statistical self-similarity and fractal dimension”, in Science 156, pp. 636-638, 1967. [25] B. Mandelbrot, “The Fractal Geometry of Nature”, San Francisco: Freeman, 1982 [26] S. Peleg, J. Naor, R. Hartley, and D. Avnir, “Multiple Resolution Texture Analysis and Classification”, IEEE Trans. on Pattern Anal. and Machine Intell.(PAMI), vol. 6, pp. 518-523, 1984. [27] A. P. Pentland, “Fractal Based Description of Natural Scenes”, IEEE Trans. on Pattern Anal. and Machine Intell. (PAMI), vol. 6, pp. 661-674, 1984 [28] J. J. Gangepain and C. Roques-Carmes, “Fractal Approach to Two Dimensional and Three Dimensional Surface Roughness”, Wear, vol. 109, pp. 119-126, 1986 [29] N. Sarkar and B.B. Chaudhuri, “An efficient approach to estimate fractal dimension of texture image”, Pattern Recognition, vol. 25, pp. 1035-1041, 1992. [30] Wen-Li Lee and Yung-Chang Chen, “ Ultrasonic Liver Tissues Analysis by Fractal Feature Vector based on M-band Wavelet Transform”, Ph. D. Thesis, Department of Electrical Engineering, National Tsing Hua University, Taiwan, 2002. [31] R. Haralick, K. Shanmugam, and I. Dinstein, “Textural features for image classification”, IEEE Transactions on Systems, Man, and Cybernetics, vol. 3, no. 6, pp. 610–621, Nov. 1973. [32] Jim C. Bezdek, “Fuzzy Mathemathics in Pattern Classification,” Ph. D. Thesis, Applied Math. Center, Cornell University, Ithaca, 1973. [33] Jim C. Bezdek, Pattern Recognition with Fuzzy Objective Function Algorithms, New York: Plenum Press , 1981. [34] J.-S. R. Jang, C.-T. Sun, and E.Mizutani, Neuro-Fuzzy and Soft Computing, Prentice Hall, 1997, pp. 426-427. [35] M. Kass, A. Witkin, and D. Terzopoulos, “Snakes: Active Contour Models,” in ICCV, 1987, pp. 261–268. [36] C. Xu and J. Prince, “Gradient Vector Flow: A New External Force for Snakes,” in CVPR, Puerto Rico, USA, 1997, pp. 66–71. [37] B. Leroy, I. Herlin, and L. D. Cohen, “Multi-resolution Algorithms for Active Contour Models,” in 12th International Conference. Analysis and Optimization of Systems, 1996, pp. 58–65. [38] L. D. Cohen, “On Active Contour Models and Balloons”, CVGIP: Image Understanding, vol. 53, no. 2, pp.211–218, March 1991. [39] T. McIreney and D. Terzopoulos, “ Topologically Adaptable Snakes,” in ICCV, Caibridge, USA, 1995, pp. 840–845. [40] L. D. Cohen and I. Cohen, “Finite-element methods for active contour models and balloons for 2-D and 3-D images”, IEEE Trans. on Pattern Anal. and Machine Intell. (PAMI), vol. 15, pp. 1131–1147, Nov. 1993. [41] R. Cipolla and A. Blake, “The dynamic analysis of apparent contours,” in ICCV, Osaka, Japan, 1990, pp. 616–625. [42] R. Curwen and A. Blake, “Dynamic Contours: Real-time Active Slines,” in Andrew Blake and Alan Yuille, Active Vision, Ed. The MIT Press, 1993, chapter II, pp. 39–57. [43] A. Pentland, “Automatic Extraction of Deformable Part Models”, International Journal of Computer Vision, pp. 107–126, 1990. [44] L. Staib and S. Duncan, “Parametrically Deformable Contour Models,” in CVPR, 1989, pp. 98–103. [45] L.V. Gool, T. Moons, E. Powrls, and A. Oosterlinck, “Vision and lie’s approach to invariance”, Image and Vision Computing, vol. 13, no. 4, pp. 259–277, 1995. [46] N. Paragios and R. Deriche, “Geodesic Active regions for Supervised Texture Segmentation,” in ICCV, Corfu, Greece, 1999, pp. 926–932. [47] A. Yezzi, A. Tsai, and A. Willsky, “A Statistical Approach to Snakes for Bimodal and Trimodal Imagery,” in ICCV, Corfu, Greece, 1999, pp. 898–903. [48] S. Zhu and A. Yuille, “Region Competition: Unifying Snakes, Region Growing, and Bayes/MDL for Multiband Image Segmentation”, IEEE Trans. on Pattern Anal. Machine Intell.(PAMI), vol. 18, pp. 884–900, 1996. [49] T. Chan and L. Vese, “An Active Contour Model without Edges,” in International Conference on Scale-Space Theories in Computer Vision, 1999, pp. 141–151. [50] C. Xu and J. L. Prince, “Global optimality of gradient vector flow,” in Proc. of 34th Annual Conference on Information Sciences and Systems (CISS’00). [Online]. Available:http://iacl.ece.jhu.edu/pubs/p125c.ps.gz, May 2006. [51] B. K. P. Horn and B. G. Schunck, “Determining optical flow”, Artificial Intelligence, vol. 17, pp.185–203, 1981. [52] R. Courant and D. Hilbert, “Methods of Mathematical Physics”, vol. 1. Interscience, New York, 1953. [53] G. Aubert and P. Kornprobst, Mathematical Problems in Image Processing: Partial Differential Equations and Calculus of Variation, New York: Springer-Verlag Inc., 2002. [54] Gilson A. Giraldi, Leandro S. Marturelli, and Paulo S. Rodrigues, “Gradient Vector Flow Models for Boundary Extraction in 2D Images,” in International Conference on Computer Graphics and Imaging (CGIM 2005), Honolulu, 2005, pp. 146-151. [55] W.F. Ames, Numerical Methods for Partial Differential Equations, 3rd ed., New York: Academic, 1992. [56] Laissue, P.P., Reiter, C., Hiesinger, P.R., Halter, S., Fischbach, K.F., and Stocker, R.F, “Three-dimensional reconstruction of the antennal lobe in Drosophila melanogaster”, J. Comp. Neurol. vol. 405, pp. 543–552, 1999. [57] Vosshall, L. B., Wong, A. M., and Axel R, “An olfactory sensory map in the fly brain”, Cell vol.102, pp. 147–159, 2000. [58] Zhang D S, Zhou W G, Yin C, Chen W T, Ozawa R, Ang L H, Anandan L, Aigaki T, and Hing H. A, “Misexpression Screen for Genes altering the Olfactory Map in Drosophila”, Genesis vol. 44, pp. 189-201, 2006. [59] Couto A, Alenius M, and Dickson BJ, “Molecular, anatomical, and functional organization of the Drosophila olfactory system”, Curr Biol vol. 15, pp. 1535-1547, Sep. 2005
|