跳到主要內容

臺灣博碩士論文加值系統

(44.192.49.72) GMT+8:2024/09/17 20:09
Font Size: Enlarge Font   Word-level reduced   Reset  
Back to format1 :::

Browse Content

 
twitterline
Author:扈安祺
Author (Eng.):An-Chi Hu
Title:適用於果蠅腦中蕈狀體的三維對位研究
Title (Eng.):3D Registration for Mushroom Bodies of Drosophila Brain
Advisor:陳永昌陳永昌 author reflink
advisor (eng):Yung-Chang Chen
degree:Master
Institution:國立清華大學
Department:電機工程學系
Narrow Field:工程學門
Detailed Field:電資工程學類
Types of papers:Academic thesis/ dissertation
Publication Year:2006
Graduated Academic Year:94
language:English
number of pages:59
keyword (chi):對位變形
keyword (eng):registrationwarping
Ncl record status:
  • Cited Cited :0
  • HitsHits:194
  • ScoreScore:system iconsystem iconsystem iconsystem iconsystem icon
  • DownloadDownload:9
  • gshot_favorites title msgFav:0
由於果蠅容易培養且具有學習與記憶的能力,果蠅在腦科學的研究中扮演重要的角色,科學家藉由了解果蠅腦這樣比較簡單的結構,去推測複雜的人腦的功能與結構。果蠅腦中的蕈狀體更是和果蠅學習與記憶的能力息息相關。因此,對於果蠅腦中蕈狀體的研究是重要的。
此外,果蠅腦中蕈狀體的形狀是非常特別的,所以對於蕈狀體的對位研究就成為了一個有用且有趣的課題。此篇論文中,我們針對果蠅腦中的蕈狀體提出了一個自動化對位的系統,把一個已知的果蠅腦中蕈狀體的標準模型對位至用共軛焦顯微鏡成像的蕈狀體的整組切片影像。這樣的影像通常會有許多不要的部份,那是由於染色的時候沒有辦法只單獨染到蕈狀體。而這個系統必須對位至真正的蕈狀體的邊界。
這篇論文中提出主要以表面為基礎的雙層架構的對位演算法,由整體的對位和局部的對位組成。利用仿射轉換來減少比較大的且較為整體的差異,例如:兩個要對位的表面模型的角度和大小。接著利用局部的對位來消除比較細微的差異。首先利用以變形場為基礎的變形方式,來消除兩個模型中蕈狀體的六個軸的角度和長度的差異。接著再利用以控制點為基礎的變形來做更細微的調整。實驗結果顯示,這個演算法可以將已知的果蠅腦中的蕈狀體的標準表面模型對位至共軛焦顯微鏡成像的整組切片影像中,且有不錯的效果。
In the research of life science, a fruit fly, Drosophila melanogaster, with the abilities of learning and memory is chosen for research to facilitate the understanding of structures and functions of the brain neural network. In fruit flies’ brains, the mushroom bodies are important neuropils, known to be involved in learning and memory.
Due to the importance of mushroom bodies and its characteristic shape, registration for the mushroom bodies is an interesting and useful research topic. The system we developed in this thesis provides an automatic registration applied to mushroom bodies. We register the standard model of mushroom bodies to individual data set of confocal images with noises.
A mainly two-stage surface-based registration algorithm has been proposed in this study. This algorithm is composed of global and local registration. Affine registration has been chosen as the global registration to eliminate the large, global differences such as scale and orientation between the two surface models. And a two-level local registration has been proposed to eliminate the remaining differences between the surfaces after the global registration. The two-level local registration initially first eliminates the angular differences and the length differences of the six axes between the target model and the standard model. Then, performing the point-based warping eliminates finer variations between the two models. The experimental results show that performing the registration algorithm proposed here makes the volume data registered satisfactorily roughly well.
Abstract ............................................................................................ i
Table of Contents ............................................................................ ii
List of Figures……………………………………………………. iv
List of Tables..…………………………………………………… vii

Chapter 1: Introduction…………………………………………...1
1.1 Background and motivation…………………………………………….1
1.2 Thesis organization……………………………………………………...2

Chapter 2: System Overview……………………………………...3

Chapter 3: Pre-processing…………………………………………8
3.1 Definition of the bounding box…………………………………………8
3.2 Global alignment of bounding box ……………………………………..9
3.2.1 Modification of the angular difference by using PCA ……………9
3.2.2 Scaling …………………………………………………………..13

Chapter 4: Global Registration…………………………………15
4.1 Creation of the distance map…………………………………………..15
4.1.1 Edge detection …………………………………………………16
4.1.2 Construction of the distance map………………………………19
4.2 Affine transform……………………………………………………….22
Chapter 5: Local registration……………………………………26
5.1 Angular differences reduction between the six axes…………………..26
5.1.1 Field-based warping……………………………………………..26
5.1.2 Feature movement using distance map………………….………29
5.2 Further warping………………………………………………………..32
5.2.1 Point-based warping……………………………………………..32
5.2.2 Automatic detection of the control points by using clustering…..34

Chapter 6: Experimental Results………………………………..41
6.1 The target 3D model and the standard model………………………41
6.2 Results of Pre-processing…………………………………………...43
6.3 Results of global registration……………………………………….45
6.4 Results of field-based warping……………………………………...47
6.5 Results of point-based warping……………………………………..49

Chapter 7: Conclusion and Future works………………………56

References…………………………………………………………58
[1] Y.C. Chen and Y.C. Chen, and A.S. Chiang, “Two-Level Model Averaging Techniques in Drosophila Brain Imaging,” in Proceeding of IEEE 2002 International Conference on Image Processing (ICIP-2002), New York, Sep. 22-25, 2002.
[2] G.Barequet and M. Sharir, Principal Component Analysis, Springer-Verlag, New York,1986
[3] Richard O. Duda, Peter E. Hart and David G. Stork, Pattern Classification, 2nd Ed., pp.114~116
[4] Yao Wang, Jorn Ostermann, and Ya-Qin Zhang, Video Processing and Communications, New Jersey: Tom Robbins, 2002
[5] J. Canny, “A computational approach to edge detection,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 8, pp.679-698, 1986.
[6] Marr, D., and Hildreth, E., ”Theory of Edge Detection.” Proc. R. Soc. Land., vol. B207, pp. 187-217.
[7] Rafael C. Gonzalez and Richard E. Woods, Digital Image Processing, 2nd ed., New Jersey: Tom Robbins, 2002, pp.572-585.
[8] J. Gomes, L. Darsa, B. Costa, and L. Velho, “Warping and morphing of Graphical Objects, Morgan Kaufmann Publishers, San Francisco, 1999.
[9] Fred L. Bookstein, “Principal Warps: Thin-Plate Splines and the Decomposition of Deformations,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 11, No. 6, pp. 567-585, June 1989.
[10] Gary E. Christensen, Richard D. Rabbitt, and Michael I. Miller, “Deformable Templates Using Large Deformation Kinematics,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 5, No.10, pp. 1435-1447, Oct. 1996.
[11] Pielot, R., Scholz, M., Obermayer, K., Gundelfinger and E.D., Hess, A., “ Warping with Optimized Weighting Factors to Reduce Inter-individual Variations in Brain Warping,” Image Analysis and Interpretation, 2000. Proceedings. 4th IEEE Southwest Symposium.
[12] A.W. Toga and P. Thompson, “ An introduction to brain warping”, In: Brain Warping, Edited by A.W. Toga, Academic Press, 1998, pp 1-26
[13] K. Rohr, H. S. Stiehl, R. Sprengel, T. M. Buzug, J. Weese, and M. H. Kuhn, “ Landmark-based elastic registration using approximating thin-plate splines”, IEEE Transactions on Medical Imaging, VOL.20, No.6 June 2001.
[14] Shepard, D., “A two-dimensional interpolation function for irregularly-spaced data”, in: 1968 ACM National Conference, 1968, pp. 517-524
[15] Gordon, W.J., Wixom, J.A., “Shepard’s method of 〝metric interpolation〞to bivariate and multivariate interpolation”, Mathematics of Computation, 1978, 32(4),pp. 253-264
[16] Franke, R. and Nielson, G., “Smooth interpolation of large sets of scattered data”, Int. J. for Numerical Methods in Engineering, 1980, 15: pp.1691-1704
[17] Rainer Pielot, Michael Scholz, Klaus Obermayer, Eckart D., Eckart D. Gundelfinger, and Andreas Hess, “ 3D edge detection to define landmarks for point-based warping in brain warping”, Int. Conf. Image Processing, 2001, 343–346
[18] Karl Rohr, “On 3D differential operators for detecting point landmarks”, Image and Vision Computing 15 (1997) 219-233
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
First Page Prev Page Next Page Last Page top
system icon system icon