跳到主要內容

臺灣博碩士論文加值系統

(44.200.77.92) 您好!臺灣時間:2024/03/01 09:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:倪嘉隆
研究生(外文):Chia-Long Ni
論文名稱:串聯式電壓驟降補償器之閉迴路控制方法
論文名稱(外文):Closed-loop Control Method for Series Voltage Sag Compensator
指導教授:鄭博泰
指導教授(外文):Po-Tai Cheng
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:146
中文關鍵詞:電壓驟降補償閉迴路控制
外文關鍵詞:voltage sag compensationclosed-loop control
相關次數:
  • 被引用被引用:0
  • 點閱點閱:297
  • 評分評分:
  • 下載下載:65
  • 收藏至我的研究室書目清單書目收藏:0
近年來電壓驟降在工業界已成為非常重要的電力品質議題。由於電力電子技術的發展與數位控制的進步,使得工業應用上所使用的電機設備,對於電力品質的要求愈來愈嚴格。在配電系統中任何的電壓驟降事故,都可能使得敏感性負載因欠電壓而停機導致生產製程中斷,造成嚴重的損失。因此,眾多的解決方法因應而生,其中以建立於電壓源反流器的串聯式耦合變壓器之電壓驟降補償器,是所有解決方案中最符合經濟效益的。
大多數的電壓驟降補償器使用開迴路控制的控制策略以增加電壓補償之響應速度,但裝置於反流器輸出端的電感-電容濾波器於補償器起動瞬間會引入電壓諧振,且在負載變動的情形下,可能會造成負載電壓擾動。另外,為了簡化控制器運算所使用的同步框轉換也會造成於同步框下因產生d-q軸互相耦合的成分,使得在控制上產生補償誤差,亦影響電壓驟降補償的品質。本文提出使用閉迴路控制方法以達成系統之主動減振,避免加入阻尼電阻而造成線路上的能量損失,而所有的控制器運算都在同步框之下操作,並確認所產生的d-q軸互相耦合成分以進行解耦合之控制。本文將詳細說明串聯式電壓驟降補償器之閉迴路控制方法,並進一步以模擬及實驗結果,來驗證所提之串聯式電壓驟降補償器之效能。
Voltage sags have become a major power quality issue encountered by industries in recent years. Industrial manufacturing equipments are very sensitive to the power quality issues. Any voltage sag event in the power distribution system could cause under-voltage fault in sensitive loads and inflict significant losses with production process interruption. The voltage sag compensator, based on the transformer-coupled series-connected voltage source inverter, is among the most cost-effective solution to protect sensitive loads.
Many voltage sag compensators adopt open-loop control strategies to increase the response speed for the sag compensation. But the L-C filter installed at the output of the voltage source inverter could introduce oscillations in transient, and the voltage disturbance could appear due to varied load conditions. In addition, the coupling components could appear due to coordinate transform for simplified operation process. It is unclear how errors can affect the performance of the voltage sag compensation. A close-loop control scheme is designed in this thesis to accomplish active damping without using any damping resistors. The entire controller is implemented in the synchronous reference frame, and all the cross-coupling terms under the synchronous reference frame are identified and de-coupled in the controller. Detailed explanations of the proposed close-loop control scheme are presented, and the effectiveness of the proposed scheme is verified by simulation and laboratory test results.
摘要 I
Abstract II
目錄 III
圖目錄 VI
表目錄 XIV
第一章 緒論 1
1.1 簡介 1
1.2 研究方向 2
1.3 本文架構 3
1.4 電壓驟降之相關規範 4
第二章 文獻回顧 6
2.1 簡介 6
2.2 動態電壓回復器之系統架構 6
2.3 動態電壓回復器之控制方法 7
2.3.1 前饋控制 8
2.3.2 負載電壓回授控制 9
2.3.3 多迴路回授控制 10
2.3.4 閉迴路與解耦合控制 11
2.5 結論 13
第三章 控制原理 14
3.1 簡介 14
3.2 前饋控制 17
3.2.1 同步框轉換 17
3.2.2 擾動濾波器設計 18
3.2.3 電壓驟降判斷 20
3.2.4 電壓補償量運算 21
3.3 閉迴路控制 22
3.3.1 電壓補償器之模型 22
3.3.2 電壓電流回授與解耦合控制 24
3.3.3 控制器增益之設計 26
3.4 湧浪電流抑制控制 32
3.5 旁路開關強制截止 35
3.6 其它電壓驟降補償器控制方法之比較 37
3.6.1 前饋控制 37
3.6.2 補償電壓回授控制 39
3.6.3 補償電壓與電容電流回授控制 41
3.6.4 各種控制方法之比較 44
3.7 結論 46
第四章 模擬結果與分析 47
4.1 簡介 47
4.2 線性負載之電壓驟降補償 49
4.2.1 平衡三相故障 49
4.2.2 不平衡單相故障 53
4.3 非線性負載之電壓驟降補償 57
4.3.1 平衡三相故障 57
4.3.2 不平衡單相故障 61
4.4 電壓驟降補償之動態負載測試 65
4.4.1 線性負載平衡三相故障 65
4.4.2 線性負載不平衡單相故障 68
4.4.3 非線性負載平衡三相故障 71
4.4.4 非線性負載不平衡單相故障 74
4.5 線性不平衡負載之電壓驟降補償 77
4.5.1 不平衡負載之三相故障 77
4.5.2 不平衡負載之單相故障 83
4.6 結論 89
第五章 實驗結果與分析 91
5.1 簡介 91
5.2 線性負載之電壓驟降補償 93
5.2.1 平衡三相故障 93
5.2.2 不平衡單相故障 97
5.3 非線性負載之電壓驟降補償 101
5.3.1 平衡三相故障 101
5.3.2 不平衡單相故障 105
5.4 電壓驟降補償之動態負載測試 109
5.4.1 線性負載平衡三相故障 109
5.4.2 線性負載不平衡單相故障 112
5.4.3 非線性負載平衡三相故障 115
5.4.4 非線性負載不平衡單相故障 118
5.5 線性不平衡負載之電壓驟降補償 121
5.5.1 不平衡負載之三相故障 121
5.5.2 不平衡負載之單相故障 127
5.6 結論 133
第六章 總結 135
參考文獻 137
附錄 139
[1] Po-Tai Cheng, Chian-Chung Huang, Chun-Chiang Pan, and Subhashish Bhattacharya, “Design and Implementation of a Series Voltage Sag Compensator Under Practical Utility Conditions”, IEEE Transactions on Industry Applications, vol.39, pp.884-853, No.3, May/June 2003.
[2] J. W. Schwartzenberg, “Application of AC switch power electronic building blocks in medium voltage static transfer switches” IEEE Power Engineering Society General Meeting, vol.3, pp.1372 – 1374, July 2003.
[3] E. Alegria, A. Khan, J. Rajda, and S. Dewan, “Static Voltage Regulator (SVR) – ride through support for semiconductor facilities”, Proceeding of the 1998 Power Quality Conference, Santa Clara, CA, November 1998.
[4] “Semi F47-0200 Specification for semiconductor processing equipment voltage sag immunity”, Semiconductor Equipment and Materials Council, Washington, DC, 2000.
[5] ITI(CBEMA) Curve Application Note, Information Technology Industry Council, 2000.
[6] W. E. Brumsickle, R. S. Schneider, G. A. Luckjiff, D. M. Divan, M. F. McGranaghan, “ Dynamic sag correctors: cost-effective industrial power line conditioning”, IEEE Transactions on Industry Applications, vol.37, pp. 212-217, Jan.-Feb. 2001.
[7] D. M. Vilathgamuwa, A. A. D. R. Perera, S. S. Choi, “Voltage sag compensation with energy optimized dynamic voltage restorer”, IEEE Transactions on Power Delivery, vol.18, pp.928-936, July 2003.
[8] Chi-Jen Huang, Shyh-Jier Huang, Fu-Sheng Pai, “Design of dynamic voltage restorer with disturbance-filtering enhancement”, IEEE Transactions on Power Electronics, vol.18, pp.1202-1210, Sept. 2003.
[9] P. K. Lim, D.S. Dorr, “Understanding and resolving voltage sag related problems for sensitive industrial customers”, IEEE Power Engineering Society Winter Meeting, vol.4, pp.2886-2890, 2000.
[10] N. H. Woodley, L. Morgan and A. Sundaram, “Experience with an inverter-based dynamic voltage restorer,” IEEE Trans. Power Delivery, Vol. 14, Issue: 3, pp. 1181-1186, July 1999.
[11] A. Kara, P. Dahler, D. Amhof, H. Gruning, “Power supply quality improvement with a dynamic voltage restorer (DVR),” Proceeding of the 1998 APEC, Vol. 2, pp. 986-993, 15-19 Feb. 1998.
[12] S. S. Choi, B. H. Li and D. M. Vilathgamuwa, “Dynamic voltage restoration with minimum energy injection,” IEEE Trans. Power System, Vol. 15, Issue: 1, pp. 51-57, Feb. 2000.
[13] K. Haddad, G. Joos, S. Chen, “Control algorithms for series static voltage regulators in faulted distribution systems”, Power Electronics Specialists Conference, vol. 1, pp. 418-423, 27 June-1 July, 1999.
[14] C. C. Huang, “A new control algorithm of voltage sag compensator for sensitive industrial loads”, Master thesis, National Tsing Hua University Dept. of Electrical Engineering, July 2002.
[15] J. G. Nielsen, M. Newman, H. Nielsen, and F. Blaabjerg, “Control and testing of a dynamic voltage restorer (DVR) at medium voltage level,” IEEE Trans. Power Electron., vol. 19, no. 3, pp. 806–813, May 2004.
[16] M. Vilathgamuwa, A.A.D. Ranjith Perera, S.S. Choi, “Performance improvement of the dynamic voltage restorer with closed-loop load voltage and current-mode control,” IEEE Trans. Power Electron., Vol. 17, on 5, pp. 824 – 834, September 2002.
[17] G. Joos, S. Chen, L. Lopes, “Closed-loop state variable control of dynamic voltage restorers with fast compensation characteristics,” IEEE Transactions on Industry Applications, Vol. 4, pp. 2252 – 2258, October 2004.
[18] Po-Tai Cheng, Wei-Ting Chen, Yu-Hsing Chen, Chih-Hsiang Wang, “A Transformer Inrush Mitigation Method for Series Voltage Sag Compensators,” Industry Applications Conference, Vol. 2, pp. 881 – 888, 2-6 Oct. 2005.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top